C++ code 13.1.5: Computation of cell-edge incidence matrix D, = GitLab

Eigen :: SparseMatrix<int> computeCellEdgelncidenceMatrix (
const If ::mesh::Mesh &mesh) {
// Store cell-edge incidence matrix here
Eigen :: SparseMatrix<int, Eigen::RowMajor> D;

// Mesh::NumEntities (unsigned codim) returns the number of elements

// with given codimension. Codim(Edge) = 0, Codim (Node) = 1.

const If ::mesh::Mesh::size_type numCells = mesh. NumEntities (0) ,

10 numEdges = mesh. NumEntities (1) ;

0 // Following the demo for the reserve()-initialising the sparse matrix
iven

12 ‘ // iqn the exercise sheet. From (2.la) we know that D has at most 4

entries
13 // per row.

14 D = Eigen::SparseMatrix<int, Eigen ::RowMajor>(numCells, numEdges) ;
15 D.reserve (Eigen::VectorXi::Constant(numCells, 4));

© ©® N o o A~ O N

17 // To compute D efficiently we iterate over all cells and check the

18 // orientations (+1 or -1, same as 1n the definition of the matrix D)

19 // of its edges. For this we may use RelativeOrientations().

20 for (const If ::mesh:: Entity »cell : mesh. Entities (0)) {

21 // Get cell index

22 If ::mesh::Mesh::size_type cellldx = mesh.Index(=cell);

23 // Get edges and their orientations (these already the entries for
D!

24 auto eéges = cell->SubEntities (1) ;

25 auto edgeOrientations = cell ->RelativeOrientations () ;

26

27 // Iterate over both and add to D

28 auto edgelt = edges.begin() ;

29 auto orntlt = edgeOrientations.begin() ;

30 for (; edgelt != edges.end() & orntlt != edgeOrientations.end() ;

31 ++edgelt, ++orntlt) {

a2 // Get the edge index and add its orientation to D

33 If ::mesh::Mesh::size_type edgeldx = mesh.Index (=+edgelt);

34 D.coeffRef(cellldx , edgeldx) += If ::mesh::to_sign(xorntlt);

35 }
36 }

37
38 return D;
s |}



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/IncidenceMatrices/mastersolution/incidencematrices.cc

