

C++11 code 2.10.12: Function projectionOntoGradients for Sub-problem (2-10.h)

➺ GitLab

2 template <typename FUNCTOR>

3 Eigen : : VectorXd pro jec tOntoGrad ien ts (const l f : : assemble : : DofHandler &dofh ,

4 FUNCTOR f) {

5 const l f : : assemble : : s ize_type N_dofs = dofh . NumDofs () ;

6 Eigen : : VectorXd sol_vec ;

7

8 // I. Build the (full) Galerkin matrix for the linear system.

9 l f : : assemble : : COOMatrix<double> A(N_dofs , N_dofs) ;

10 Pro jec t ionOntoGrad ien ts : : E lementMatr ixProv ider my_mat_provider ;

11 // co-dimension 0 because we locally assemble on cells

12 l f : : assemble : : AssembleMatrixLocally (0 , dofh , dofh , my_mat_provider , A) ;

13

14 // II. Build the (full) right hand side vector

15 Eigen : : VectorXd phi (N_dofs) ;

16 phi . setZero () ;

17 Pro jec t ionOntoGrad ien ts : : GradProjRhsProvider my_vec_provider (f) ;

18 // co-dimension 0 because we locally assemble on cells

19 l f : : assemble : : AssembleVectorLocally (0 , dofh , my_vec_provider , ph i) ;

20

21 // III. Enforce homogeneous dirichlet boundary conditions

22 // We do this by selecting the DOFs on the boundary and setting the

23 // values to zero. Note, that we could also use this to set the
boundary

24 // to any other value (if bc were not homogeneous)

25

26 // To select the right DOFs we need a selector:

27 // * for all DOFs on the boundary return true and the value on the
boundary

28 // * for all other DOFs return false (and whatever as value)

29 const double boundary_val = 0 ;

30 auto bd_f lags { l f : : mesh : : u t i l s : : flagEntitiesOnBoundary (dofh . Mesh () , 2) } ;

31 auto my_selector = [& dofh , &bd_f lags , &boundary_val] (unsigned i n t dof_ idx) {

32 i f (bd_f lags (dofh . E n t i t y (do f_ idx))) {

33 return std : : make_pair (true , boundary_val) ;

34 } // interior node: the value we return here does not matter

35 return std : : make_pair (false , 42 .0) ;

36 } ;

37 // Since we know the values on the boundary we know the solution on
these

38 // DOFs and we can write the Galerkin LSE in block format and solve
only

39 // for the unknown coefficients. This modification is done by the
following

40 // function FixFlaggedSolutionComponents(). We use the selector we
have

41 // defined above.

42 // See [Lecture → Section 2.7.6] for explanations.

43 l f : : assemble : : FixFlaggedSolutionComponents <double >(my_selector , A, ph i) ;

44

45 // IV. Solve the LSE using an Eigen solver

46 // Convert from triplet to CRS format

47 const Eigen : : SparseMatrix <double> A_crs = A. makeSparse () ;

48 Eigen : : SparseLU<Eigen : : SparseMatrix <double>> so l ve r ;

49 so l ve r . compute (A_crs) ;

50 sol_vec = so l ve r . solve (ph i) ;

51 return sol_vec ;

52 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ProjectionOntoGradients/mastersolution/projectionontogradients.h

