


C++11 code 2.10.12: Function projectionOntoGradients for Sub-problem (2-10.h)
=> GitLab

template <typename FUNCTOR>
Eigen ::VectorXd projectOntoGradients (const |f ::assemble:: DofHandler &dofh,

© ©® N o o B~ W N

24
25
26
27

28
29
30
31
32
33
34
35
36
37

FUNCTOR f) {
const If ::assemble::size_type N_dofs = dofh.NumDofs () ;
Eigen :: VectorXd sol_vec;

// I. Build the (full) Galerkin matrix for the linear system.
If ::assemble :: COOMatrix<double> A(N_dofs, N_dofs) ;
ProjectionOntoGradients :: ElementMatrixProvider my_mat_provider;

// co-dimension 0 because we locally assemble on cells

If ::assemble:: AssembleMatrixLocally (0, dofh, dofh, my_mat_provider, A);

// II. Build the (full) right hand side vector
Eigen :: VectorXd phi(N_dofs) ;

phi.setZero () ;

ProjectionOntoGradients :: GradProjRhsProvider my_vec_provider(f);

// co-dimension 0 because we locally assemble on cells

If ::assemble:: AssembleVectorLocally (0, dofh, my_vec_provider, phi);

// IITI. Enforce homogeneous dirichlet boundary conditions
// We do this by selecting the DOFs on the boundary and setting the

// values to zero. Note, that we could also use this to set the
boundary
// to any other value (if bc were not homogeneous)

// To select the right DOFs we need a selector:

// * for all DOFs on the boundary return true and the value on the
boundary
// * for all other DOFs return false (and whatever as value)

const double boundary_val = 0;

auto bd_flags{If::mesh:: utils :: flagEntitiesOnBoundary (dofh.Mesh(), 2)};

auto my_selector = [&dofh, &bd_flags, &boundary_val](unsigned int dof_idx) {
if (bd_flags (dofh.Entity (dof_idx))) {

return std:: make_pair(true, boundary_val);

} // interior node: the value we return here does not matter
return std::make_pair(false, 42.0);

}i

// Since we know the values on the boundary we know the solution on

these

38 // DOFs and we can write the Galerkin LSE in block format and solve
only

39 // for the unknown coefficients. This modification is done by the
following

40 // function FixFlaggedSolutionComponents (). We use the selector we
have

41
42
43
44
45
46
47
48
49
50
51
52

// defined above.
// See [Lecture — Section 2.7.6] for explanations.
If ::assemble :: FixFlaggedSolutionComponents <double>(my_selector, A, phi);

// IV. Solve the LSE using an Eigen solver

// Convert from triplet to CRS format

const Eigen::SparseMatrix<double> A_crs = A.makeSparse () ;
Eigen :: SparseLU<Eigen :: SparseMatrix<double>> solver;
solver.compute (A_crs) ;

sol_vec = solver.solve(phi);

return sol_vec;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ProjectionOntoGradients/mastersolution/projectionontogradients.h

