
C++11 code 2.10.14: Unit test for Sub-problem (2-10.i) ➺ GitLab

2 TEST(Pro jec t ionOntoGradients , d i v _ f r e e _ t e s t) {

3 // Building test mesh

4 auto mesh_p = l f : : mesh : : t e s t _ u t i l s : : GenerateHybrid2DTestMesh (3) ;

5 // Divergence-free vector field

6 const auto f = [] (Eigen : : Vector2d x) { return Eigen : : Vector2d (−x (1) , x (0)) ; } ;

7

8 // DofHandler for the p.w. linear Lagrangian finite element

9 l f : : assemble : : UniformFEDofHandler dofh (mesh_p ,

10 { { l f : : base : : RefEl : : kPo in t () , 1 } ,

11 { l f : : base : : RefEl : : kSegment () , 0 } ,

12 { l f : : base : : RefEl : : kT r ia () , 0 } }) ;

13 // Compute solution

14 const Eigen : : VectorXd sol_vec =

15 Pro jec t ionOntoGrad ien ts : : projectOntoGradients (dofh , f) ;

16

17 // As stated in the exercise, we would expect the solution to be zero.

18 // Hence we check every entry if its (numerically) zero.

19 // The GoogleTest framework provides a function we may use:

20 /* EXPECT_NEAR(value 1, value 2, max. difference) */

21 const double eps = 1e−15;

22 for (std : : size_t i = 0 ; i < sol_vec . size () ; ++ i) {

23 EXPECT_NEAR(sol_vec [i] , 0 .0 , eps) ;

24 // Try testing for equality, you’ll see it will fail miserably!

25 /* EXPECT_EQ(sol_vec[i], 0.0); */

26 }

27 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ProjectionOntoGradients/mastersolution/test/projectionontogradients_test.cc

