C++11 code 2.12.2: Sub-problem (2-12.b): function testQuadOrderTria () =* GitLab

© ©® N o o B~ w0 N

bool testQuadOrderTria(const If ::quad::QuadRule &quad_rule,
unsigned int order) {
bool order_isExact = true; // return variable
double my_epsilon = 1e-12;
// Retrieve the passed quadrature rule’s reference element
// NOLINTBEGIN (clang-analyzer—-deadcode.DeadStores)
const If ::base::RefEl ref_element = quad_rule.RefEIl();
// NOLINTEND (clang-analyzer-deadcode.DeadStores)
// Check that the passed reference element is triangular
assert(ref_element == |f ::base:: RefEIType:: kTria);
// A quadrature rule involves quadrature nodes and weights defined so that
// the weighted sum of the value of a function at these points approximates
// the integral of that function.
const Eigen::VectorXd weights = quad_rule.Weights () ;
const Eigen::MatrixXd points = quad_rule.Points(); // (x,y) points
const Eigen::VectorXd x_coords = points.row(0);
const Eigen::VectorXd y_coords = points.row(1);
// A quadrature rule over a two dimensional domain is of order k if it can
// integrate exactly all bivariate polynomials of order k-1. The collection of
// such polynomials is spanned by the set of homogeneous polynomials of order
// strictly less than k, i.e. by the polynomials of the form
/* p Id(x,y) = (x"I) (y"J), I+J < k: */
auto eval_p_IJ = [&x_coords, &y_coords](int |, int J) —> Eigen::VectorXd ({
return x_coords.array().pow(l) = y_coords.array () .pow(J);
}; /# evaluates p _IJ at all points (x,y) as defined by quad rule */

/# Compare analytical value and quadrature sum for all p 1J, I+J < k #/
double exact_integral; // analytical value of the integral

double quad_rule_sum; // weighted sum used for approximating the integral
for (int | = 0; | < order; l++) {
for (int J = 0; J < order - |; J++) {
exact_integral = factorial (I) = factorial(J) / factorial(l + J + 2);

quad_rule_sum = eval_p_IJ(l, J).dot(weights);

// Check 1if the difference bewteen the results is within tolerance
order_isExact = fabs(exact_integral - quad_rule_sum) <=
fabs (exact_integral) = my_epsilon;
if (!order_isExact) {
return order_isExact;
}
1
}

return order_isExact;

}

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/TestQuadratureRules/mastersolution/testquadraturerules.cc

