
C++11 code 2.12.2: Sub-problem (2-12.b): function testQuadOrderTria() ➺ GitLab

2 bool testQuadOrderTria (const l f : : quad : : QuadRule &quad_rule ,

3 unsigned i n t order) {

4 bool order_ isExac t = true ; // return variable

5 double my_epsilon = 1e−12;

6 // Retrieve the passed quadrature rule’s reference element

7 // NOLINTBEGIN(clang-analyzer-deadcode.DeadStores)

8 const l f : : base : : RefEl ref_e lement = quad_rule . RefEl () ;

9 // NOLINTEND(clang-analyzer-deadcode.DeadStores)

10 // Check that the passed reference element is triangular

11 assert (re f_e lement == l f : : base : : RefElType : : kT r ia) ;

12 // A quadrature rule involves quadrature nodes and weights defined so that

13 // the weighted sum of the value of a function at these points approximates

14 // the integral of that function.

15 const Eigen : : VectorXd weights = quad_rule . Weights () ;

16 const Eigen : : MatrixXd po in t s = quad_rule . Points () ; // (x,y) points

17 const Eigen : : VectorXd x_coords = po in t s . row (0) ;

18 const Eigen : : VectorXd y_coords = po in t s . row (1) ;

19 // A quadrature rule over a two dimensional domain is of order k if it can

20 // integrate exactly all bivariate polynomials of order k-1. The collection of

21 // such polynomials is spanned by the set of homogeneous polynomials of order

22 // strictly less than k, i.e. by the polynomials of the form

23 /* p_IJ(x,y) = (x̂ I)(ŷ J), I+J < k: */

24 auto eval_p_IJ = [& x_coords , &y_coords] (i n t I , i n t J) −> Eigen : : VectorXd {

25 return x_coords . array () . pow(I) * y_coords . array () . pow(J) ;

26 } ; /* evaluates p_IJ at all points (x,y) as defined by quad_rule */

27

28 /* Compare analytical value and quadrature sum for all p_IJ, I+J < k */

29 double e x a c t _ i n t e g r a l ; // analytical value of the integral

30 double quad_rule_sum ; // weighted sum used for approximating the integral

31 for (i n t I = 0 ; I < order ; I ++) {

32 for (i n t J = 0; J < order − I ; J++) {

33 e x a c t _ i n t e g r a l = f a c t o r i a l (I) * f a c t o r i a l (J) / f a c t o r i a l (I + J + 2) ;

34 quad_rule_sum = eval_p_IJ (I , J) . dot (weights) ;

35

36 // Check if the difference bewteen the results is within tolerance

37 order_ isExac t = fabs (e x a c t _ i n t e g r a l − quad_rule_sum) <=

38 fabs (e x a c t _ i n t e g r a l) * my_epsilon ;

39 i f (! o rder_ isExac t) {

40 return order_ isExac t ;

41 }

42 }

43 }

44 return order_ isExac t ;

45 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/TestQuadratureRules/mastersolution/testquadraturerules.cc

