C++11 code 2.12.3: Sub-problem (2-12.c): function testQuadOrderQuad () = GitLab

© ©® N o o B~ w0 N

bool testQuadOrderQuad(const If ::quad::QuadRule &quad_rule,
unsigned int order) {
bool order_isExact = true; // return variable

double my_epsilon = 1e-12;

// Retrieve the passed quadrature rule’s reference element

// NOLINTBEGIN (clang-analyzer-deadcode.DeadStores)

const If ::base::RefEl ref_element = quad_rule.RefEl() ;

// NOLINTEND (clang-analyzer-deadcode.DeadStores)

// Check that the passed reference element is triangular

assert(ref_element == |f ::base:: RefEIType ::kQuad) ;

// A quadrature rule consists of quadrature nodes and weights defined so that

// the weighted sum of the value of a function at these points approximates

// the integral of that function.

const Eigen::VectorXd weights = quad_rule.Weights () ;

const Eigen::MatrixXd points = quad_rule.Points(); // (x,y) points

const Eigen::VectorXd x_coords = points.row(0) ;

const Eigen::VectorXd y_coords = points.row(1);

// A quadrature rule over a two dimensional domain is of order k if it can

// integrate exactly all bivariate polynomials of order k-1. The collection of

// such polynomials is spanned by the set of homogeneous polynomials of order

// strictly less than k, i.e. by the polynomials of the form

/* p IJ(x,y) = (1-x)"I(y"J), I,J < k: =/

auto eval_p_IJ = [&x_coords, &y_coords](int |, int J) —> Eigen::VectorXd ({
return x_coords.array ().pow(l) = y_coords.array () .pow(J);

}; /* evaluates p IJ at all points (x,y) as defined by quad rule x/

/# Compare the analytical value and the quadrature sum for all p IJ, I+J < k
*/
double exact_integral; // analytical value of the integral
double quad_rule_sum; // weighted sum used for approximating the integral
for (int | = 0; | < order; I++) {
for (int J = 0; J < order; J++) {
exact_integral = 1.0 / ((I + 1.0) = (J + 1.0));
quad_rule_sum = eval_p_IJ (I, J).dot(weights);

// Check if the difference bewteen the results is within tolerance
order_isExact = fabs(exact_integral - quad_rule_sum) <=
fabs (exact_integral) « my_epsilon;
if (lorder_isExact) {
return order_isExact;
}
}
}

return order_isExact;

}

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/TestQuadratureRules/mastersolution/testquadraturerules.cc

