
C++11 code 2.12.3: Sub-problem (2-12.c): function testQuadOrderQuad() ➺ GitLab

2 bool testQuadOrderQuad (const l f : : quad : : QuadRule &quad_rule ,

3 unsigned i n t order) {

4 bool order_ isExac t = true ; // return variable

5

6 double my_epsilon = 1e−12;

7 // Retrieve the passed quadrature rule’s reference element

8 // NOLINTBEGIN(clang-analyzer-deadcode.DeadStores)

9 const l f : : base : : RefEl ref_e lement = quad_rule . RefEl () ;

10 // NOLINTEND(clang-analyzer-deadcode.DeadStores)

11 // Check that the passed reference element is triangular

12 assert (re f_e lement == l f : : base : : RefElType : : kQuad) ;

13 // A quadrature rule consists of quadrature nodes and weights defined so that

14 // the weighted sum of the value of a function at these points approximates

15 // the integral of that function.

16 const Eigen : : VectorXd weights = quad_rule . Weights () ;

17 const Eigen : : MatrixXd po in t s = quad_rule . Points () ; // (x,y) points

18 const Eigen : : VectorXd x_coords = po in t s . row (0) ;

19 const Eigen : : VectorXd y_coords = po in t s . row (1) ;

20 // A quadrature rule over a two dimensional domain is of order k if it can

21 // integrate exactly all bivariate polynomials of order k-1. The collection of

22 // such polynomials is spanned by the set of homogeneous polynomials of order

23 // strictly less than k, i.e. by the polynomials of the form

24 /* p_IJ(x,y) = (1-x)̂ I(ŷ J), I,J < k: */

25 auto eval_p_IJ = [& x_coords , &y_coords] (i n t I , i n t J) −> Eigen : : VectorXd {

26 return x_coords . array () . pow(I) * y_coords . array () . pow(J) ;

27 } ; /* evaluates p_IJ at all points (x,y) as defined by quad_rule */

28

29 /* Compare the analytical value and the quadrature sum for all p_IJ, I+J < k

30 */

31 double e x a c t _ i n t e g r a l ; // analytical value of the integral

32 double quad_rule_sum ; // weighted sum used for approximating the integral

33 for (i n t I = 0 ; I < order ; I ++) {

34 for (i n t J = 0; J < order ; J++) {

35 e x a c t _ i n t e g r a l = 1.0 / ((I + 1 .0) * (J + 1 .0)) ;

36 quad_rule_sum = eval_p_IJ (I , J) . dot (weights) ;

37

38 // Check if the difference bewteen the results is within tolerance

39 order_ isExac t = fabs (e x a c t _ i n t e g r a l − quad_rule_sum) <=

40 fabs (e x a c t _ i n t e g r a l) * my_epsilon ;

41 i f (! o rder_ isExac t) {

42 return order_ isExac t ;

43 }

44 }

45 }

46 return order_ isExac t ;

47 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/TestQuadratureRules/mastersolution/testquadraturerules.cc

