
C++11 code 2.13.3: Sub-problem (2-13.b): Implementation of Eval() member function of

AnisotropicDiffusionElementMatrixProvider for triangles ➺ GitLab

2 // I. OBTAIN COORDINATES OF THE MIDPOINTS

3 // I.i Hard-code the midpoints of the edges on the reference triangle

4 Eigen : : Matrix <double , 2 , 3> midpo in ts_ re f (2 , 3) ;

5 midpo in ts_ re f << 0.5 , 0 .5 , 0 , 0 , 0 .5 , 0 . 5 ;

6 // I.ii Obtain the midpoints of the parametrized triangle

7 auto midpoints_param = cel l_geometry −>Global (m idpo in ts_ re f) ;

8

9 // II. COMPUTE LOCAL INTEGRATION DATA

10 // II.i Compute the inverse of the tranposed Jacobian

11 // (Ĵ T)̂ {-1} = J*(Ĵ T*J)̂ {-1}

12 // of the parametrization map at the midpoints of the reference triangle

13 const Eigen : : MatrixXd JinvT (

14 cel l_geometry −>JacobianInverseGramian (m idpo in ts_ re f)) ;

15 // II.ii Compute the integration element

16 // integration_element(x) = sqrt(det(Ĵ T*J))

17 // where J is the Jacobian of the parametrization map

18 const Eigen : : VectorXd i n teg ra t i on_e lemen t (

19 cel l_geometry −> IntegrationElement (m idpo in ts_ re f)) ;

20 // II.iii Hard-code the gradients of the reference basis functions

21 Eigen : : Matrix <double , 2 , 3> g r a d i e n t s _ r e f (2 , 3) ;

22 g r a d i e n t s _ r e f << −1 , 1 , 0 , −1 , 0 , 1 ;

23

24 // III. PERFORM NUMERICAL QUADRATURE

25 element_matr ix = Eigen : : MatrixXd : : Zero (3 , 3) ;

26 for (i n t i = 0 ; i < 3 ; i ++) { // for each local degree of freedom

27 // III.i Evaluate the diffusion tensor

28 Eigen : : Vector2d anisot ropy_vec =

29 an i so t ropy_vec_ f i e l d_ (midpoints_param . col (i)) ;

30 Eigen : : Matrix2d d i f f u s i o n _ t e n s o r =

31 Eigen : : Matrix2d : : I den t i t y (2 , 2) +

32 anisot ropy_vec * anisot ropy_vec . transpose () ;

33 // III. ii Compute gradients of the global basis functions

34 Eigen : : MatrixXd gradients_param (2 , 3) ;

35 gradients_param = JinvT . block (0 , 2 * i , 2 , 2) * g r a d i e n t s _ r e f ;

36 // III. iii Compute local contribution to the element matrix

37 for (i n t j = 0 ; j < 3 ; j ++) {

38 for (i n t k = 0; k < 3; k++) {

39 double i n tegrand = (gradients_param . col (j) . transpose () *
40 d i f f u s i o n _ t e n s o r * gradients_param . col (k)) ;

41 element_matr ix (j , k) += in teg ra t i on_e lemen t (i) * in tegrand ;

42 }

43 }

44 }

45 element_matr ix *= 1 . / 6 . ;

46 break ;

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ParametricElementMatrices/mastersolution/anisotropicdiffusionelementmatrixprovider.cc

