C++11 code 2.13.3: Sub-problem (2-13.b): Implementation of Eval () member function of
AnisotropicDiffusionElementMatrixProvider for triangles =+ GitLab

© ©® N o o B~ W N

// I. OBTAIN COORDINATES OF THE MIDPOINTS
// I.1 Hard-code the midpoints of the edges on the reference triangle
Eigen:: Matrix<double, 2, 3> midpoints_ref(2, 3);
midpoints_ref << 0.5, 0.5, 0, 0, 0.5, 0.5;
// I.1ii Obtain the midpoints of the parametrized triangle
auto midpoints_param = cell_geometry—>Global (midpoints_ref) ;
// II. COMPUTE LOCAL INTEGRATION DATA
10 // II.1 Compute the inverse of the tranposed Jacobian
11 // (I T)NM=1} = JTx (T T*J) “{—1}
12 // of the parametrization map at the midpoints of the reference triangle
13 const Eigen:: MatrixXd JinvT (
14 cell_geometry ->JacobianlnverseGramian (midpoints_ref));
15 // II.ii Compute the integration element
16 // integration element (x) = sqrt (det (J"T*J))
17 // where J is the Jacobian of the parametrization map
18 const Eigen::VectorXd integration_element(
19 cell_geometry —->IntegrationElement (midpoints_ref));
20 // II.ii1 Hard-code the gradients of the reference basis functions
21 Eigen:: Matrix<double, 2, 3> gradients_ref(2, 3);
22 gradients_ref << -1, 1, 0, -1, 0, 1;
24 // III. PERFORM NUMERICAL QUADRATURE
25 element_matrix = Eigen:: MatrixXd::Zero(3, 3);
26 for (int i = 0; i < 3; i++) { // for each local degree of freedom
27 // III.i Evaluate the diffusion tensor
28 Eigen::Vector2d anisotropy_vec =
29 anisotropy_vec_field_ (midpoints_param.col(i));
30 Eigen:: Matrix2d diffusion_tensor =
31 Eigen :: Matrix2d :: Identity (2, 2) +
32 anisotropy_vec = anisotropy_vec.iranspose();
33 // III. ii Compute gradients of the global basis functions
34 Eigen :: MatrixXd gradients_param (2, 3);
35 gradients_param = JinvT.block(0, 2 = i, 2, 2) = gradients_ref;
36 // III. iii Compute local contribution to the element matrix
37 for (int j = 0; j < 3; j++) {
38 for (int k = 0; k < 3; k++) {
39 double integrand = (gradients_param.col(j).transpose() =
40 diffusion_tensor = gradients_param.col(k));
41 element_matrix(j, k) += integration_element(i) = integrand;
42 }
43 }
44 }
45 element_matrix == 1. / 6.;
46 break ;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ParametricElementMatrices/mastersolution/anisotropicdiffusionelementmatrixprovider.cc

