


C++11 code 2.13.4: Sub-problem (2-13.b): Implementation of Eval () member function of

AnisotropicDiffusionElementMatrixProvider for quadrilaterals =+ GitLab

© ©® N o o B~ W N

// I. OBTAIN COORDINATES OF THE MIDPOINTS

// I.1 Hard-code the midpoints of the edges on the reference quadrilateral
Eigen:: Matrix<double, 2, 4> midpoints_ref(2, 4);

midpoints_ref << 0.5, 1, 0.5, 0, 0, 0.5, 1, 0.5;

// I.1i1i Obtain the midpoints of the parametrized quadrilateral

auto midpoints_param = cell_geometry—>Global (midpoints_ref);

// II. COMPUTE LOCAL INTEGRATION DATA
// II.1i Compute the inverse of the tranposed Jacobian of the
/S (J°T) =1} = J*(J"T+J) “{-1}
// parametrization map at the midpoints of the reference quadrilateral
const Eigen ::MatrixXd JinvT (
cell_geometry ->JacobianlnverseGramian (midpoints_ref));
// IT.ii Compute the integration element
// integration element (x) = sqrt (det (J"T*J))
// where J is the Jacobian of the parametrization map
const Eigen::VectorXd integration_element(
cell_geometry ->IntegrationElement (midpoints_ref));
// II.ii1 Hard-code a matrix-valued function that returns the gradients of
// the reference basis functions evaluated at coordinates
auto gradients_ref =
[1(Eigen::Vector2d x) —> Eigen:: Matrix<double, 2, 4> {
Eigen:: Matrix<double, 2, 4> element_matrix;
element_matrix (0, 0) = x(1) - 1;
element_matrix (1, 0) x(O) - 1;
element_matrix (0, 1) = x(1);
element_matrix (1, 1) = ) ;
element_matrix (0, 2) =
element_matrix (1, 2) =
element_matrix (0, 3) =
element_matrix (1, 3) =
return element_matrix;

xX X

x(O
(1)
(0);
X(1),
- x(0);
b

// III. PERFORM NUMERICAL QUADRATURE
element_matrix = Eigen :: MatrixXd ::Zero(4, 4);
for (int i = 0; i < 4; i++) { // for each local degree of freedom
// ITT.i Evaluate the diffusion tensor
Eigen::Vector2d anisotropy_vec =
anisotropy_vec_field_ (midpoints_param.col(i));
Eigen :: Matrix2d diffusion_tensor =
Eigen :: Matrix2d :: Identity (2, 2) +
anisotropy_vec = anisotropy_vec.iranspose();
// IIT.ii Compute gradients of the global basis functions
Eigen :: Matrix<double, 2, 4> gradients_param{
JinvT .block(0, 2 = i, 2, 2) = gradients_ref(midpoints_ref.col(i))};
// III.iii Compute local contribution to the element matrix
for (int j = 0; j < 4; j++) {
for (int k = 0; k < 4; k++) {
double integrand (gradients_param.col(j).transpose () =«
diffusion_tensor = gradients_param.col(k));
element_matrix(j, k) += integration_element(i) = integrand;
}
}

}



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ParametricElementMatrices/mastersolution/anisotropicdiffusionelementmatrixprovider.cc

