

C++11 code 2.13.4: Sub-problem (2-13.b): Implementation of Eval() member function of

AnisotropicDiffusionElementMatrixProvider for quadrilaterals ➺ GitLab

2 // I. OBTAIN COORDINATES OF THE MIDPOINTS

3 // I.i Hard-code the midpoints of the edges on the reference quadrilateral

4 Eigen : : Matrix <double , 2 , 4> midpo in ts_ re f (2 , 4) ;

5 midpo in ts_ re f << 0.5 , 1 , 0 .5 , 0 , 0 , 0 .5 , 1 , 0 . 5 ;

6 // I.ii Obtain the midpoints of the parametrized quadrilateral

7 auto midpoints_param = cel l_geometry −>Global (m idpo in ts_ re f) ;

8

9 // II. COMPUTE LOCAL INTEGRATION DATA

10 // II.i Compute the inverse of the tranposed Jacobian of the

11 // (Ĵ T)̂ {-1} = J*(Ĵ T*J)̂ {-1}

12 // parametrization map at the midpoints of the reference quadrilateral

13 const Eigen : : MatrixXd JinvT (

14 cel l_geometry −>JacobianInverseGramian (m idpo in ts_ re f)) ;

15 // II.ii Compute the integration element

16 // integration_element(x) = sqrt(det(Ĵ T*J))

17 // where J is the Jacobian of the parametrization map

18 const Eigen : : VectorXd i n teg ra t i on_e lemen t (

19 cel l_geometry −> IntegrationElement (m idpo in ts_ re f)) ;

20 // II.iii Hard-code a matrix-valued function that returns the gradients of

21 // the reference basis functions evaluated at coordinates

22 auto g r a d i e n t s _ r e f =

23 [] (Eigen : : Vector2d x) −> Eigen : : Matrix <double , 2 , 4> {

24 Eigen : : Matrix <double , 2 , 4> element_matr ix ;

25 element_matr ix (0 , 0) = x (1) − 1 ;

26 element_matr ix (1 , 0) = x (0) − 1 ;

27 element_matr ix (0 , 1) = 1 − x (1) ;

28 element_matr ix (1 , 1) = −x (0) ;

29 element_matr ix (0 , 2) = x (1) ;

30 element_matr ix (1 , 2) = x (0) ;

31 element_matr ix (0 , 3) = −x (1) ;

32 element_matr ix (1 , 3) = 1 − x (0) ;

33 return element_matr ix ;

34 } ;

35

36 // III. PERFORM NUMERICAL QUADRATURE

37 element_matr ix = Eigen : : MatrixXd : : Zero (4 , 4) ;

38 for (i n t i = 0 ; i < 4 ; i ++) { // for each local degree of freedom

39 // III.i Evaluate the diffusion tensor

40 Eigen : : Vector2d anisot ropy_vec =

41 an i so t ropy_vec_ f i e l d_ (midpoints_param . col (i)) ;

42 Eigen : : Matrix2d d i f f u s i o n _ t e n s o r =

43 Eigen : : Matrix2d : : I den t i t y (2 , 2) +

44 anisot ropy_vec * anisot ropy_vec . transpose () ;

45 // III.ii Compute gradients of the global basis functions

46 Eigen : : Matrix <double , 2 , 4> gradients_param {

47 JinvT . block (0 , 2 * i , 2 , 2) * g r a d i e n t s _ r e f (m idpo in ts_ re f . col (i)) } ;

48 // III.iii Compute local contribution to the element matrix

49 for (i n t j = 0 ; j < 4 ; j ++) {

50 for (i n t k = 0; k < 4; k++) {

51 double i n tegrand = (gradients_param . col (j) . transpose () *
52 d i f f u s i o n _ t e n s o r * gradients_param . col (k)) ;

53 element_matr ix (j , k) += in teg ra t i on_e lemen t (i) * in tegrand ;

54 }

55 }

56 }

e lement_matr ix = 1 . / 4 . ;

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ParametricElementMatrices/mastersolution/anisotropicdiffusionelementmatrixprovider.cc

