
C++11 code 2.13.11: Sub-problem (2-13.e): Implementation of Eval() member function of

ImpedanceBoundaryEdgeMatrixProvider ➺ GitLab

2 Eigen : : MatrixXd ImpedanceBoundaryEdgeMatrixProvider : : Eval (

3 const l f : : mesh : : E n t i t y &edge) {

4 Eigen : : MatrixXd element_matr ix (2 , 2) ;

5

6 /* TOOLS AND DATA */

7 // Obtain local->global index mapping for current finite element space

8 const l f : : assemble : : DofHandler &dofh { fe_space_ −>LocGlobMap () } ;

9 // Obtain edge data

10 auto edge_global_ idx = dofh . Globa lDof Ind ices (edge) ;

11

12 // I. COMPUTE LOCAL INTEGRATION DATA

13 Eigen : : Vector2d w;

14 // Evaluate w(x) at the degrees of freedom (endpoints of the edge)

15 for (i n t i = 0 ; i < 2 ; i ++) {

16 w(i) = coef f_expansion_ (edge_global_ idx [i]) ;

17 }

18

19 // II. COMPUTE LOCAL INTEGRATION DATA

20 double edge_length = l f : : geometry : : Volume (* edge . Geometry ()) ;

21 // It is assumed here that the edge is straight!

22 Eigen : : MatrixXd m_1(2 , 2) , m_2(2 , 2) , m_3(2 , 2) ;

23 m_1 << 24 , 6 , 6 , 4 ;

24 m_2 << 6 , 4 , 4 , 6 ;

25 m_3 << 4 , 6 , 6 , 24;

26

27 // III. PERFORM NUMERICAL QUADRATURE

28 element_matr ix =

29 (w(0) * w(0)) * m_1 + (w(0) * w(1)) * m_2 + (w(1) * w(1)) * m_3;

30 element_matr ix *= edge_length / 120 . ;

31

32 return element_matr ix ;

33 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ParametricElementMatrices/mastersolution/impedanceboundaryedgematrixprovider.cc

