

SOLUTION of (2-14.i):

The local shape functions b_K^1, b_K^2, b_K^3 for $\mathcal{CR}(\mathcal{M})$ on a triangle K are *affine linear*,

$$\forall v_h \in \mathcal{CR}(\mathcal{M}), \forall K \in \mathcal{M}: v_h|_K \in \mathcal{P}_1(\mathbb{R}^2),$$

and, thus, can be written as a linear combination of the barycentric coordinate functions λ_i of K .

We elaborate the derivation for b_K^1 ; after permutation of indices the considerations also apply to b_K^2 and b_K^3 . We set

$$b_K^1 = \xi_1 \lambda_1 + \xi_2 \lambda_2 + \xi_3 \lambda_3,$$

with yet unknown coefficients $\xi_1, \xi_2, \xi_3 \in \mathbb{R}$. From (2.14.1) we obtain three equations:

$$\begin{aligned} 1 &= b_K^1(m_K^1) = \xi_1 \lambda_1(m_K^1) + \xi_2 \lambda_2(m_K^1) + \xi_3 \lambda_3(m_K^1) = \frac{1}{2} \xi_1 + \frac{1}{2} \xi_2, \\ 0 &= b_K^1(m_K^2) = \xi_1 \lambda_1(m_K^2) + \xi_2 \lambda_2(m_K^2) + \xi_3 \lambda_3(m_K^2) = \frac{1}{2} \xi_2 + \frac{1}{2} \xi_3, \\ 0 &= b_K^1(m_K^3) = \xi_1 \lambda_1(m_K^3) + \xi_2 \lambda_2(m_K^3) + \xi_3 \lambda_3(m_K^3) = \frac{1}{2} \xi_1 + \frac{1}{2} \xi_3. \end{aligned}$$

We have obtained a 3×3 linear system of equations for ξ_1, ξ_2, ξ_3 :

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix},$$

for which we find the solution

$$\xi_1 = 1, \quad \xi_2 = 1, \quad \xi_3 = -1 \quad \Rightarrow \quad b_K^1 = \lambda_1 + \lambda_2 - \lambda_3.$$

This formula can be simplified based on the fact that $\lambda_1 + \lambda_2 + \lambda_3 \equiv 1$, which gives us the general formula

$$b_K^j = 1 - 2\lambda_{\text{opp}(j)}, \quad j = 1, 2, 3. \quad (2.14.3)$$