C++ code 2.14.26: Sub-problem (2-14.w): Implementation of computeCRL2Error, = GitLab

© ©® N o o B~ w0 N

template <typename FUNCTION>
double computeCRL2Error(std :: shared_ptr<CRFeSpace> fe_space,
const Eigen::VectorXd &mu, FUNCTION &&u) {
double 12 error = 0.;

// TODO: task 2-14.w)
// Obtain local-to—global map and current mesh object
const If ::assemble:: DofHandler &dof_handler{fe_space->LocGlobMap () };
auto mesh_ptr = fe_space->Mesh () ;

// Loop over all cells of the mesh (entities of co—dimension 0)
for (const If ::mesh:: Entity =cell : mesh_ptr—>Entities (0)) {
const If ::assemble::size_type num_nodes = cell —>RefEl () .NumNodes() ;
LF_ASSERT_MSG(num_nodes == 3, "Only meaningful for triangles!");
// Obtain pointer to shape information for cell
const If ::geometry:: Geometry +cell_geom{cell ->Geometry () };
// 2x3— matrix with corner coordinates in its columns
const Eigen::MatrixXd vertices{|f ::geometry::Corners (+cell_geom)};
// clang-format off
// 2x3-matrix of midpoint coordinates
Eigen :: MatrixXd midpoints{vertices =
(Eigen:: Matrix<double, 3, 3>(3,3) <<

0.5, 0.0, 0.5,

0.5, 0.5, 0.0,

0.0, 0.5, 0.5)
.finished () };

// clang-format on

// Obtain global indices of local shape functions

std ::span<const |f ::assemble::gdof_idx_t> cell_dof_idx (
dof_handler.GlobalDoflndices («cell));

// Sum contributions of quadrature nodes

double local sum = 0.;

// The CR interpolation nodes are the midpoints and so the exact

// solution needs to be evaluated at the same points

for (int loc_idx = 0; loc_idx < num_nodes; ++loc_idx) {

local_sum +=
std ::pow(mu[cell_dof_idx[loc_idx]] - u(midpoints.col(loc_idx)), 2);

}

// Sum cell contributions

I2_error += If ::geometry::Volume(=cell_geom) = (local_sum / num_nodes) ;
}
return std::sqrt(12_error);

}

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/NonConformingCrouzeixRaviartFiniteElements/mastersolution/crl2error.h

