


C++11 code 2.2.12: Solution code for Sub-problem (2-2.e) =+ GitLab

N o o A W N

std :: vector< :
const std::vector<
std :: vector<

// First step:

// indices.
. occur. ;
int rows_max_idx =

for (const
rows_max_idx =
(triplet.
cols_max_idx =
(triplet.

0 ’

}

int n_cols =

() > rows_max_idx) ? triplet.

() > cols_max_idx) ? triplet.

<double>> transformCOOmatrix (
: <double>> &A) {
<double>> A_t{}; // return value

find the size of the matrix by searching the maximal
Depends on the assumption that no zero rows/columns

cols_max_idx = O0;
<double> &triplet : A) {

rows_max_idx;

()
()

cols_max_idx;

cols_max_idx + 1;

// Make sure we deal with a square matrix

assert (rows_max_idx +
// The matrix size
assert(n_cols % 2 ==

int N = n_cols;
int M=N/ 2;

1 == n_cols);
must have even parity

De

// Size of (square) matrix
// Half the size

// clang-format off

// Distribute entries of

for (const

"old" matrix to new matrix

<double> &it : A) {

// row and column indices of current A triplet

it.
it.

const int | =
const int J =

() +1; // k in (2.2.8)~(2.2.11)
() + 1; // £ in (22.8)-(2.2.11)

// Distinguish different parities of indices

if (1 %%2==0&J%2==20) {
// even, even, (2.2.8)
A_t.emplace_back(l / 2 -1, J / 2 - 1, it.value());
A_t.emplace_back(l / 2 +M -1, J /2 +M- 1, it.value());
A_t.emplace_back(l / 2 +M -1, J / 2 - 1, —it.value());
A_t.emplace_back(l / 2 -1, J / 2 +M- 1, —it.value());

} else if (1 %2 !=0&J%2 !=0) {
// odd, odd, see (2.2.9)
A_t.emplace_back((l + 1) / 2 -1, (J + 1) / 2 — 1, it.value());
A_t.emplace_back((l + 1) / 2 +M -1, (J + 1) / 2 +M- 1, it.value());
A_t.emplace_back((l + 1) / 2 -1, (J+1) / 2 +M- 1, it.value());
A_t.emplace_back((l + 1) / 2 +M -1, (J + 1) / 2 -1, it.value());

} else if (1 %2 ==0&J%2 !=0) {
// even, odd, see (2.2.10)
A_t.emplace_back(l / 2 -1, (J + 1) / 2 — 1, it.value());
A_t.emplace_back(l / 2 -1, (J + 1) / 2 + M- 1, it.value());
A_t.emplace_back(l / 2 + M- 1, (J + 1) / 2 + M- 1, —it.value());
A_t.emplace_back(l / 2 +M -1, (J + 1) / 2 — 1, —it.value());

} else if (1 %2 !=0&J%2 ==0) {
// odd, even, see (2.2.11)
A_t.emplace_back((l + 1) / 2 -1, J / 2 - 1, it.value());
A_t.emplace_back((l + 1) / 2 +M-1,J / 2 + M- 1, —it.value());
A_t.emplace_back((l + 1) /2 +M-1,d / 2 - 1, it.value());
A_t.emplace_back((l + 1) / 2 -1, J / 2 + M- 1, —it.value());

} else {
assert(false);



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/TransformationOfGalerkinMatrices/mastersolution/transformationofgalerkinmatrices.cc

