

C++11 code 2.2.12: Solution code for Sub-problem (2-2.e) ➺ GitLab

2 std : : vector <Eigen : : Tr ip le t <double>> transformCOOmatrix (

3 const std : : vector <Eigen : : Tr ip le t <double>> &A) {

4 std : : vector <Eigen : : Tr ip le t <double>> A_t { } ; // return value

5

6 // First step: find the size of the matrix by searching the maximal

7 // indices. Depends on the assumption that no zero rows/columns
occur.

8 i n t rows_max_idx = 0 , cols_max_idx = 0;

9 for (const Eigen : : Tr ip le t <double> & t r i p l e t : A) {

10 rows_max_idx =

11 (t r i p l e t . row () > rows_max_idx) ? t r i p l e t . row () : rows_max_idx ;

12 cols_max_idx =

13 (t r i p l e t . col () > cols_max_idx) ? t r i p l e t . col () : cols_max_idx ;

14 }

15 i n t n_cols = cols_max_idx + 1;

16

17 // Make sure we deal with a square matrix

18 assert (rows_max_idx + 1 == n_cols) ;

19 // The matrix size must have even parity

20 assert (n_cols % 2 == 0) ;

21

22 i n t N = n_cols ; // Size of (square) matrix

23 i n t M = N / 2 ; // Half the size

24 // clang-format off

25 // Distribute entries of "old" matrix to new matrix

26 for (const Eigen : : Tr ip le t <double> & i t : A) {

27 // row and column indices of current A triplet

28 const i n t I = i t . row () + 1 ; // k in (2.2.8)-(2.2.11)
29 const i n t J = i t . col () + 1 ; // ℓ in (2.2.8)-(2.2.11)
30

31 // Distinguish different parities of indices

32 i f (I % 2 == 0 & J % 2 == 0) {

33 // even, even, (2.2.8)
34 A_t . emplace_back (I / 2 − 1 , J / 2 − 1 , i t . value ()) ;

35 A_t . emplace_back (I / 2 + M − 1 , J / 2 + M − 1 , i t . value ()) ;

36 A_t . emplace_back (I / 2 + M − 1 , J / 2 − 1 , − i t . value ()) ;

37 A_t . emplace_back (I / 2 − 1 , J / 2 + M − 1 , − i t . value ()) ;

38 } else i f (I % 2 != 0 & J % 2 != 0) {

39 // odd, odd, see (2.2.9)
40 A_t . emplace_back ((I + 1) / 2 − 1 , (J + 1) / 2 − 1 , i t . value ()) ;

41 A_t . emplace_back ((I + 1) / 2 + M − 1 , (J + 1) / 2 + M − 1 , i t . value ()) ;

42 A_t . emplace_back ((I + 1) / 2 − 1 , (J + 1) / 2 + M − 1 , i t . value ()) ;

43 A_t . emplace_back ((I + 1) / 2 + M − 1 , (J + 1) / 2 − 1 , i t . value ()) ;

44 } else i f (I % 2 == 0 & J % 2 != 0) {

45 // even, odd, see (2.2.10)
46 A_t . emplace_back (I / 2 − 1 , (J + 1) / 2 − 1 , i t . value ()) ;

47 A_t . emplace_back (I / 2 − 1 , (J + 1) / 2 + M − 1 , i t . value ()) ;

48 A_t . emplace_back (I / 2 + M − 1 , (J + 1) / 2 + M − 1 , − i t . value ()) ;

49 A_t . emplace_back (I / 2 + M − 1 , (J + 1) / 2 − 1 , − i t . value ()) ;

50 } else i f (I % 2 != 0 & J % 2 == 0) {

51 // odd, even, see (2.2.11)
52 A_t . emplace_back ((I + 1) / 2 − 1 , J / 2 − 1 , i t . value ()) ;

53 A_t . emplace_back ((I + 1) / 2 + M − 1 , J / 2 + M − 1 , − i t . value ()) ;

54 A_t . emplace_back ((I + 1) / 2 + M − 1 , J / 2 − 1 , i t . value ()) ;

55 A_t . emplace_back ((I + 1) / 2 − 1 , J / 2 + M − 1 , − i t . value ()) ;

56 } else {

57 assert (fa lse) ;

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/TransformationOfGalerkinMatrices/mastersolution/transformationofgalerkinmatrices.cc

