C++ code 2.4.12: Implementation of computeA () = GitLab

2 | template <typename FUNCTOR1>

3 | std::vector<Eigen:: Triplet <double>> computeA(const Eigen::VectorXd &mesh,
4 FUNCTOR1 &&alpha) {

5 // Nodes are indexed as 0=x 0 < x 1 < ... <x N=1

6 unsigned N = mesh.size () - 1;

7 // Initializing the vector of triplets whose size corresponds to the
8 // number of entries in a (N+1) x (N+1) tridiagonal (band) matrix

9 std :: vector<Eigen :: Triplet <double>> triplets;

10 // Maximal size of vector; avoilids intermediate allocations

11 triplets .reserve(3 = N + 1);

12 // Some auxiliary variables

13 double diag, off_diag; // matrix entries

14 double dx_left, dx_right; // cell widths

16 /* Computing diagonal entries x*/

17 // First diagonal entry (left boundary node)

18 dx_right = mesh(1) - mesh(0);

19 diag = alpha((mesh(1) + mesh(0)) / 2.) / dx_right;

20 triplets .push_back(Eigen:: Triplet <double>(0, 0, diag));
21 // Last diagonal entry (right boundary node)

22 dx_left = mesh(N) - mesh(N - 1);

23 diag = alpha((mesh(N) + mesh(N - 1)) / 2.) / dx_left;
24 triplets .push_back(Eigen:: Triplet <double>(N, N, diag));

25 // All diagonal entries associated to interior nodes

26 for (unsigned i = 1; i < N; ++i) {

27 dx_left = mesh(i) - mesh(i - 1);

28 dx_right = mesh(i + 1) — mesh(i);

29 diag = alpha((mesh(i - 1) + mesh(i)) / 2.) / dx_left +
30 alpha ((mesh(i) + mesh(i + 1)) / 2.) / dx_right;
31 triplets .push_back(Eigen:: Triplet<double>(i, i, diag));

32 }

34 /# Computing off-diagonal entries #*/

35 for (unsigned i = 0; i < N; ++i) {
36 dx_right = mesh(i + 1) — mesh(i);
37 off_diag = -alpha((mesh(i) + mesh(i + 1)) / 2.) / dx_right;
38 triplets .push_back(Eigen:: Triplet <double>(i + 1, i
39 triplets .push_back(Eigen:: Triplet<double>(i, i + 1, off_diag));
40
}
41 return triplets;

2 |} // computeA

, off_diag));



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/LinearFE1D/mastersolution/linearfe1d.h

