C++ code 2.4.13: Implementation of computeM () = GitLab

© ©® N o o B~ w0 N

template <typename FUNCTOR1>
std :: vector<Eigen :: Triplet <double>> computeM(const Eigen::VectorXd &mesh,
FUNCTOR1 &&gamma) {
// Nodes are indexed as 0=x 0 < x 1 < ... <xN=1
unsigned N = mesh.size () - 1;

// The basis tent functions spanning the space of continuous piecewise
// linear polynomial satisfy the cardinal basis property with respect
// to the nodes of the mesh. Using the trapezoidal rule to approximate
// the integrals therefore lead to a diagonal (N+1) x (N+1) matrix

std :: vector<Eigen :: Triplet <double>> triplets;

triplets .reserve(N + 1);

// Some tool variables
double diag, off_diag;
double dx; // cell widths

/# Computing diagonal entries x/

// First diagonal entry (left boundary node)

dx = mesh(1) - mesh(0) ;

diag = gamma(mesh(0)) « 0.5 = dx;

triplets .push_back(Eigen:: Triplet <double>(0, 0, diag));
// Last diagonal entry (right boundary node)

dx = mesh(N) — mesh(N - 1);

diag = gamma(mesh(N)) « 0.5 = dx;

triplets .push_back(Eigen:: Triplet <double>(N, N, diag));
// All diagonal entries associated to interior nodes

for (unsigned i = 1; i < N; ++i) {
dx = mesh(i + 1) — mesh(i - 1);
diag = gamma(mesh(i)) « 0.5 = dx;
triplets .push_back(Eigen:: Triplet <double>(i, i, diag));

Y} // computeM

return triplets;
Y} // computeM



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/LinearFE1D/mastersolution/linearfe1d.h

