
C++ code 2.4.13: Implementation of computeM() ➺ GitLab

2 template <typename FUNCTOR1>

3 std : : vector <Eigen : : Tr ip le t <double>> computeM (const Eigen : : VectorXd &mesh ,

4 FUNCTOR1 &&gamma) {

5 // Nodes are indexed as 0=x_0 < x_1 < ... < x_N = 1

6 unsigned N = mesh . size () − 1 ;

7

8 // The basis tent functions spanning the space of continuous piecewise

9 // linear polynomial satisfy the cardinal basis property with respect

10 // to the nodes of the mesh. Using the trapezoidal rule to approximate

11 // the integrals therefore lead to a diagonal (N+1) x (N+1) matrix

12 std : : vector <Eigen : : Tr ip le t <double>> t r i p l e t s ;

13 t r i p l e t s . reserve (N + 1) ;

14

15 // Some tool variables

16 double diag , o f f _d i ag ;

17 double dx ; // cell widths

18

19 /* Computing diagonal entries */

20 // First diagonal entry (left boundary node)

21 dx = mesh (1) − mesh (0) ;

22 diag = gamma(mesh (0)) * 0.5 * dx ;

23 t r i p l e t s . push_back (Eigen : : Tr ip le t <double >(0 , 0 , diag)) ;

24 // Last diagonal entry (right boundary node)

25 dx = mesh(N) − mesh(N − 1) ;

26 diag = gamma(mesh(N)) * 0.5 * dx ;

27 t r i p l e t s . push_back (Eigen : : Tr ip le t <double >(N, N, diag)) ;

28 // All diagonal entries associated to interior nodes

29 for (unsigned i = 1 ; i < N; ++ i) {

30 dx = mesh(i + 1) − mesh(i − 1) ;

31 diag = gamma(mesh(i)) * 0.5 * dx ;

32 t r i p l e t s . push_back (Eigen : : Tr ip le t <double >(i , i , d iag)) ;

33 } // computeM

34

35 return t r i p l e t s ;

36 } // computeM

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/LinearFE1D/mastersolution/linearfe1d.h

