C++ code 2.4.14: Implementation of computeRHS () = GitLab

template <typename FUNCTOR1>
Eigen :: VectorXd computeRHS(const Eigen::VectorXd &mesh, FUNCTOR1 &&f) {
// Nodes are indexed as O=x 0 < x 1 < ... <x N=1
unsigned N = mesh.size () - 1;
// Initializing right hand side vector
Eigen :: VectorXd rhs_vec = Eigen::VectorXd::Zero(N + 1);

© ©® N o o B~ w0 N

// Some tool variables
10 double dx;

12 /% Calculate the entries */

13 // First entry (left boundary node)

14 rhs_vec(0) = f(mesh(0)) « (mesh(1) — mesh(0)) = 0.5;

15 // Last entry (right boundary node)

16 rhs_vec(N) = f(mesh(N)) = (mesh(N) - mesh(N - 1)) = 0.5;

17 // All other enties associated to interior nodes
18 for (unsigned i = 1; i < N; ++i) {

19 dx = mesh(i + 1) — mesh(i - 1);

20 rhs_vec(i) = f(mesh(i)) « 0.5 » dx;

21 }

22

23 return rhs_vec;

20 |} // computeRHS



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/LinearFE1D/mastersolution/linearfe1d.h

