C++ code 2.4.15: Implementation of solveA () = GitLab

> | template <typename FUNCTOR1, typename FUNCTOR2-

3 | Eigen::VectorXd solveA(const Eigen::VectorXd &mesh, FUNCTOR1 &&gamma,

4 FUNCTOR2 &&f) {

5 // Nodes are indexed as 0=x 0 < x 1 < ... <xN=1

6 // Note: What is called N here, is M in the project description!

7 unsigned N = mesh.size () - 1;

8 // Initializations (notice initialization with zeros here)

9 Eigen ::VectorXd u = Eigen::VectorXd::Zero(N + 1); // solution vec

10 Eigen :: SparseMatrix<double> A(N + 1, N + 1); // laplacian galerkin mat

11 Eigen :: SparseMatrix<double> M(N + 1, N + 1); // mass galerkin mat
12 Eigen :: SparseMatrix<double> L(N + 1, N + 1); // full galerkin mat

14 // I. Build the (full) Galerkin matrix L for the lin. sys.
15 // I.i Compute the entries of the Laplace Galerkin matrix A
16 // (const. ceoff. func. alpha = 1.0)

17 std :: vector<Eigen :: Triplet <double>> triplets_A =

18 computeA(mesh, [](double) —> double { return 1.0; });

19 // I.1i1i Compute the entries of the mass matrix M

20 std :: vector<Eigen:: Triplet <double>> triplets_M = computeM(mesh, gamma) ;
21 // I.11i Assemble the sparse matrices

22 A.setFromTriplets (triplets_A .begin(), triplets_A .end());
23 M. setFromTriplets (triplets_M .begin (), triplets_M.end());
24 L=A+M, //Full Galerkin matrix of the LSE \Label[line] {SAApM}

2 // II. Build the right hand side source vector

27 Eigen :: VectorXd rhs_vec = computeRHS(mesh, f);

28

29 // III. Enforce (zero) dirichlet boundary conditions

30 // The B.C. are u(0) = u(N) = 0. The boundary nodes are indexed by 0

31 // and N. We can therefore opt for the option of droping first and last rows
32 // and columns of L, along with the first and last entries of the rhs vec.
33 Eigen :: SparseMatirix<double> L_reduced = L.block(1, 1, N - 1, N - 1);

34 Eigen ::VectorXd rhs_vec_reduced = rhs_vec.segment(1, N - 1);

35

36 // IV. Solve the LSE L*u = rhs vec using an Eigen solver

37 Eigen:: SimplicialLDLT<Eigen :: SparseMatrix<double>, Eigen::Lower> solver;

38 solver.compute (L_reduced) ;

39 if (solver.info() != Eigen::Success) {

40 throw std::runtime_error("Could not decompose the matrix");

4 }

42 u.segmeni(1, N - 1) = solver.solve(rhs_vec_reduced) ;

44 // The solution vector u was initialized with zeros, and therefore already
45 // contains the zero Dirichlet boundary data in the first and last entry
46 return u;

a7 |} // solveA



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/LinearFE1D/mastersolution/linearfe1d.h

