
C++ code 2.4.15: Implementation of solveA() ➺ GitLab

2 template <typename FUNCTOR1, typename FUNCTOR2>

3 Eigen : : VectorXd solveA (const Eigen : : VectorXd &mesh , FUNCTOR1 &&gamma,

4 FUNCTOR2 &&f) {

5 // Nodes are indexed as 0=x_0 < x_1 < ... < x_N = 1

6 // Note: What is called N here, is M in the project description!

7 unsigned N = mesh . size () − 1 ;

8 // Initializations (notice initialization with zeros here)

9 Eigen : : VectorXd u = Eigen : : VectorXd : : Zero (N + 1) ; // solution vec

10 Eigen : : SparseMatrix <double> A(N + 1 , N + 1) ; // laplacian galerkin mat

11 Eigen : : SparseMatrix <double> M(N + 1 , N + 1) ; // mass galerkin mat

12 Eigen : : SparseMatrix <double> L (N + 1 , N + 1) ; // full galerkin mat

13

14 // I. Build the (full) Galerkin matrix L for the lin. sys.

15 // I.i Compute the entries of the Laplace Galerkin matrix A

16 // (const. ceoff. func. alpha = 1.0)

17 std : : vector <Eigen : : Tr ip le t <double>> t r i p l e t s _ A =

18 computeA (mesh , [] (double) −> double { return 1 . 0 ; }) ;

19 // I.ii Compute the entries of the mass matrix M

20 std : : vector <Eigen : : Tr ip le t <double>> t r i p l e t s _ M = computeM (mesh , gamma) ;

21 // I.iii Assemble the sparse matrices

22 A. setFromTriplets (t r i p l e t s _ A . begin () , t r i p l e t s _ A . end ()) ;

23 M. setFromTriplets (t r i p l e t s _ M . begin () , t r i p l e t s _ M . end ()) ;

24 L = A + M; // Full Galerkin matrix of the LSE \Label[line]{SAApM}

25

26 // II. Build the right hand side source vector

27 Eigen : : VectorXd rhs_vec = computeRHS (mesh , f) ;

28

29 // III. Enforce (zero) dirichlet boundary conditions

30 // The B.C. are u(0) = u(N) = 0. The boundary nodes are indexed by 0

31 // and N. We can therefore opt for the option of droping first and last rows

32 // and columns of L, along with the first and last entries of the rhs_vec.

33 Eigen : : SparseMatrix <double> L_reduced = L . block (1 , 1 , N − 1 , N − 1) ;

34 Eigen : : VectorXd rhs_vec_reduced = rhs_vec . segment (1 , N − 1) ;

35

36 // IV. Solve the LSE L*u = rhs_vec using an Eigen solver

37 Eigen : : SimplicialLDLT <Eigen : : SparseMatrix <double > , Eigen : : Lower> so l ve r ;

38 so l ve r . compute (L_reduced) ;

39 i f (so l ve r . i n f o () != Eigen : : Success) {

40 throw std : : run t ime_er ro r ("Could not decompose the matrix ") ;

41 }

42 u . segment (1 , N − 1) = so l ve r . solve (rhs_vec_reduced) ;

43

44 // The solution vector u was initialized with zeros, and therefore already

45 // contains the zero Dirichlet boundary data in the first and last entry

46 return u ;

47 } // solveA

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/LinearFE1D/mastersolution/linearfe1d.h

