C++ code 2.4.20: Implementation of solveC () = GitLab

© ©® N o o B~ w0 N

template <typename FUNCTOR1, typename FUNCTOR2-
Eigen ::VectorXd solveC(const Eigen::VectorXd &mesh, FUNCTOR1 &&alpha,
FUNCTOR2 &&gamma) {
// Nodes are indexed as 0=x 0 < x 1 < ... <xN=1
unsigned N = mesh.size () - 1;
// Initializations (notice initialization with zeros here)
Eigen ::VectorXd u(N + 1); // solution vec
Eigen :: SparseMatrix<double> AN + 1, N + 1); // laplacian galerkin mat
Eigen :: SparseMatrix<double> M(N + 1, N + 1); // mass galerkin mat
Eigen :: SparseMatrix<double> L(N + 1, N + 1); // full galerkin mat

// I. Build the (full) Galerkin matrix L for the lin. sys.

// I.1i Compute the entries of the Laplace Galerkin matrix A

std :: vector<Eigen :: Triplet <double>> triplets_A = computeA(mesh, alpha);
// I.1i1 Compute the entries of the mass matrix M

std :: vector<Eigen :: Triplet <double>> triplets_M = computeM(mesh, gamma) ;
// I.111 Assemble the sparse matrices

A.setFromTriplets (triplets_A .begin(), triplets_A.end());
M.setFromTriplets (triplets_M .begin (), triplets_M.end());

L=A+M; //Full Galerkin matrix of the LSE

// II. Build the right hand side source vector
Eigen :: VectorXd rhs_vec =
computeRHS (mesh, [](double) -> double { return 1.0; });

// IV. Solve the LSE Axu = rhs vec using an Eigen solver
Eigen:: SimplicialLDLT<Eigen :: SparseMatrix<double>> solver;
solver.compute (L) ;
if (solver.info() != Eigen::Success) ({

throw std::runtime_error("Could not decompose the matrix");

}
u = solver.solve(rhs_vec);

return u;
Y} // solveC



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/LinearFE1D/mastersolution/linearfe1d.h

