C++ code 2.4.25: Implementation of solveB () = GitLab

template <typename FUNCTOR1, typename FUNCTOR2-
Eigen ::VectorXd solveB(const Eigen::VectorXd &mesh, FUNCTOR1 &&alpha,
FUNCTOR2 &&f, double u0, double ul) {
// Nodes are indexed as 0=x 0 < x 1 < ... <xN=1
unsigned N = mesh.size () - 1;
// Initializations
Eigen ::VectorXd u(N + 1); // solution vec
Eigen :: SparseMatrix<double> AN + 1, N + 1); // laplacian galerkin mat
10 // Some tool variables
11 double dx_left, dx_right; // cell widths

© ©® N o o B~ w0 N

13 // I. Build the Galerkin matrix A
14 std :: vector<Eigen :: Triplet <double>> triplets = computeA(mesh, alpha);
15 A.setFromTriplets(triplets .begin(), triplets.end());

17 // II. Build the right hand side source vector
18 Eigen::VectorXd rhs_vec = computeRHS(mesh, f);

20 // III. Enforce dirichlet boundary conditions

21 // Proceeding as in solveA, we begin by dropping the first and last rows
22 // and columns of the galerkin matrix. The rhs vec needs to be modified to
23 // account for the non-homegenous Dirichlet boundary conditions. It is
24 // modified using an offset function.
25 Eigen:: SparseMatrix<double> A_reduced = A.block(1, 1, N - 1, N - 1);
26 Eigen ::VectorXd rhs_vec_reduced = rhs_vec.segment(1, N - 1) -
27 A.block(1, 0, N -1, 1) « u0 -
28 A.block(1, N, N - 1, 1) « ul;
29
30 // IV. Solve the LSE A*u = rhs vec using an Eigen solver
31 Eigen:: SimplicialLDLT <Eigen :: SparseMatrix<double>> solver;
32 solver.compute (A_reduced) ;
33 if (solver.info() != Eigen::Success) {
34 throw std::runtime_error("Could not decompose the matrix");
35
}
36 u.segmeni(1, N - 1) = solver.solve(rhs_vec_reduced) ;
37
38 // The solution vector still needs to be supplemented with the known
39 // boundary values

40 u(0) = u0; // left boundary node
41 u(N) = ul; // right boundary node
42 return u;

4 |} // solveB



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/LinearFE1D/mastersolution/linearfe1d.h

