C++11 code 2.6.4: Computation of edge-node incidence matrix G =* GitLab

© ® N o a &~ W N

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Eigen :: SparseMatrix<int> computeEdgeVertexincidenceMatrix (
const If ::mesh::Mesh &mesh) {
// Store edge-vertex incidence matrix here
Eigen :: SparseMatrix<int, Eigen:: RowMajor> G;

// Mesh::NumEntities (unsigned codim) returns the number of elements
// with given codimension. Codim(Edge) = 1, Codim (Node) = 2.
const If ::mesh::Mesh::size_type numEdges = mesh. NumEntities (1),
numNodes = mesh. NumEntities (2) ;
// Following the demo for the reserve()-initialising the sparse matrix
iven
// f; the exercise sheet. From (2.l1a) we know that G has exactly 2

entries
// per row.

G = Eigen::SparseMatrix<int, Eigen::RowMajor>(numEdges, numNodes) ;
G.reserve (Eigen:: VectorXi:: Constant(numEdges, 2));

// To compute G efficiently we iterate over all edges and check the

index

// of the nodes at its end. This is the efficient way to do the
assembly,

// introduced as "distribute scheme" in class. We cannot iterative
over

// vertices, because LehrFEM++ does not allow to visit the edges
// adjacent to a vertex
for (const If ::mesh:: Entity =edge : mesh. Entities (1)) {
// Get index of this edge
If ::mesh::Mesh::size_type edgeldx = mesh.Index (=edge) ;
// Get the nodes and their indices.
// Note, that seen from the edges the nodes have codim 1, not 2,
// hence we call SubEntities(l). This is a relative codimension!
auto nodes = edge->SubEntities (1) ;
If ::mesh::Mesh::size_type firstNodeldx = mesh.Index («nodes[0]) ;
If ::mesh::Mesh::size_type lastNodeldx = mesh.Index (»nodes[1]) ;
// Add the matrix entries according to the definition
G.coeffRef(edgeldx, firstNodeldx) += 1
G.coeffRef(edgeldx, lastNodeldx) —-= 1;

}

return G;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/IncidenceMatrices/mastersolution/incidencematrices.cc

