C++11 code 2.8.1: Sub-problem (2-8.c): Implementation of solve () = GitLab

> o A~ w N

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

template <If ::assemble:: EntityMatrixProvider ELMAT_PROVIDER,
If ::assemble:: EntityMatrixProvider ELVEC PROVIDER>
Eigen::VectorXd solve (ELMAT_PROVIDER &elmat_provider ,
ELVEC_PROVIDER &elvec_provider) {

// Use one of LehrFEM++’s default meshes. Try different meshes by
changing the
// function index parameter. See the documentation of that function

for
// details ablut the available meshes

std :: shared_ptr<const |f ::mesh::Mesh> mesh_p =

If ::mesh::test_utils :: GenerateHybrid2DTestMesh (8, 1.0 / 3.0);
// We use a linear Lagrangian FE space
auto fe_space =

std :: make_shared<If :: uscalfe :: FeSpaceLagrangeO1<double >>(mesh_p) ;
// Reference to current mesh, obtained from the FE space
const |f ::mesh::Mesh &mesh{+(fe_space->Mesh())};
// Obtain local->global index mapping for current finite element space
const If ::assemble:: DofHandler &dofh{fe_space->LocGlobMap() };
// Dimension of finite element space'
const If ::base::size_type N_dofs(dofh.NumDofs()) ;

// Matrix in triplet format holding Galerkin matrix, zero initially.
If ::assemble :: COOMatrix<double> A(N_dofs, N_dofs) ;
// Invoke assembly on cells (co-dimension = 0). The element matrix

provider 1s
// passed as an argument

If ::assemble:: AssembleMatrixLocally (0, dofh, dofh, elmat_provider, A);
Eigen :: SparseMatrix<double> A_crs = A.makeSparse () ;

// Right-hand side vector; has to be set to zero initially

Eigen :: Matrix<double, Eigen::Dynamic, 1> phi(N_dofs) ;

phi.setZero () ;

// Invoke assembly on cells (codim == 0). The element vector provider

is
// passed as an argument
AssembleVectorLocally (0, dofh, elvec_provider, phi);

// Define solution vector
Eigen :: VectorXd sol_vec = Eigen::VectorXd::Zero(N_dofs) ;

// Solve linear system using Eigen’s sparse direct elimination
Eigen ::SparseLU<Eigen :: SparseMatrix<double>> solver;
solver.compute(A_crs) ;
// Make sure LU-decomposition could be computed
if (solver.info() != Eigen::Success) {
throw std::runtime_error("Could not decompose the matrix");
}
// Backward substitution
sol_vec = solver.solve(phi);



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ElementMatrixComputation/mastersolution/solve.h

