
C++11 code 2.8.1: Sub-problem (2-8.c): Implementation of solve() ➺ GitLab

2 template < l f : : assemble : : E n t i t y M a t r i x P r o v i d e r ELMAT_PROVIDER,

3 l f : : assemble : : E n t i t y M a t r i x P r o v i d e r ELVEC_PROVIDER>

4 Eigen : : VectorXd solve (ELMAT_PROVIDER &elmat_prov ider ,

5 ELVEC_PROVIDER &e lvec_prov ide r) {

6 // Use one of LehrFEM++’s default meshes. Try different meshes by
changing the

7 // function index parameter. See the documentation of that function
for

8 // details ablut the available meshes

9 std : : shared_ptr <const l f : : mesh : : Mesh> mesh_p =

10 l f : : mesh : : t e s t _ u t i l s : : GenerateHybrid2DTestMesh (8 , 1.0 / 3 .0) ;

11 // We use a linear Lagrangian FE space

12 auto fe_space =

13 std : : make_shared< l f : : usca l fe : : FeSpaceLagrangeO1<double >>(mesh_p) ;

14 // Reference to current mesh, obtained from the FE space

15 const l f : : mesh : : Mesh &mesh { * (fe_space −>Mesh ()) } ;

16 // Obtain local->global index mapping for current finite element space

17 const l f : : assemble : : DofHandler &dofh { fe_space −>LocGlobMap () } ;

18 // Dimension of finite element space‘

19 const l f : : base : : s ize_type N_dofs (dofh . NumDofs ()) ;

20

21 // Matrix in triplet format holding Galerkin matrix, zero initially.

22 l f : : assemble : : COOMatrix<double> A(N_dofs , N_dofs) ;

23 // Invoke assembly on cells (co-dimension = 0). The element matrix
provider is

24 // passed as an argument

25 l f : : assemble : : AssembleMatrixLocally (0 , dofh , dofh , e lmat_prov ider , A) ;

26 Eigen : : SparseMatrix <double> A_crs = A. makeSparse () ;

27

28 // Right-hand side vector; has to be set to zero initially

29 Eigen : : Matrix <double , Eigen : : Dynamic , 1> ph i (N_dofs) ;

30 phi . setZero () ;

31 // Invoke assembly on cells (codim == 0). The element vector provider
is

32 // passed as an argument

33 AssembleVectorLocally (0 , dofh , e lvec_prov ider , ph i) ;

34

35 // Define solution vector

36 Eigen : : VectorXd sol_vec = Eigen : : VectorXd : : Zero (N_dofs) ;

37

38 // Solve linear system using Eigen’s sparse direct elimination

39 Eigen : : SparseLU<Eigen : : SparseMatrix <double>> so l ve r ;

40 so l ve r . compute (A_crs) ;

41 // Make sure LU-decomposition could be computed

42 i f (so l ve r . info () != Eigen : : Success) {

43 throw std : : run t ime_er ro r ("Could not decompose the matrix ") ;

44 }

45 // Backward substitution

46 sol_vec = so l ve r . solve (ph i) ;

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ElementMatrixComputation/mastersolution/solve.h

