C++ code 2.9.6: Sub-problem (2-9.h): Implementation of
convertDOFsLinearQuadratic () = GitLab

© ©® N o o B~ W N

24

25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Eigen ::VectorXd convertDOFsLinearQuadratic (
const If ::assemble:: DofHandler &dofh Linear FE,
const If ::assemble:: DofHandler &dofh_Quadratic_FE,
const Eigen::VectorXd &mu) {
if (dofh_Linear_FE.Mesh() != dofh_Quadratic_FE.Mesh()) {
throw "Underlying meshes must be the same for both DOF handlers!";
}
std :: shared_ptr<const |f ::mesh::Mesh> mesh =
dofh_Linear_FE.Mesh(); // get the mesh
// coefficient vector for returning the result
Eigen :: VectorXd zeta(dofh_Quadratic_FE.NumDofs()) ;

// Play safe: always set zero 1f you’re not sure to set every entry

later
// on for us this shouldn’t be a problem, but just to be sure

zeta.setZero () ;
for (const auto =cell : mesh->Entities (0)) {
// check if the spaces are actually linear and quadratic
if (dofh_Linear_FE.NumLocalDofs(+cell) != 3 ||
dofh_Quadratic_FE .NumLocalDofs (+ cell) != 6) {
throw std::runtime_error (
"dofh_Linear_FE must have 3 dofs per cell and dofh_Quadratic_ FE 6!");

}

// get the global dof indices of the linear and quadratic FE spaces,
note
// that the vectors obey the LehrFEM++ numbering, which we will make

use of
// 1lin _dofs will have size 3 for the 3 dofs on the nodes and

// quad_dofs will have size 6, the first 3 entries being the nodes

and
// the last 3 the edges

std ::span<const |f ::assemble::gdof_idx_t> lin_dofs =
dofh_Linear_FE . GlobalDoflndices (xcell);
std ::span<const If ::assemble:: gdof_idx_t> quad_dofs =
dofh_Quadratic_FE . GlobalDoflndices (x cell) ;
for (std::size_t | = 0; | <= 2; ++|) {
// Let pi1,p2,p3 be the nodes of the triangle and pa,ps pPe the
// edge midpoints. Let Aq,Ay, A3 be the local basis
// functions of S? and by,..,bg for Sg. The values of
// Ai in the interpolation nodes pi,.,pPe¢ are the
// coefficients of writing A; as lin. comb of by,..bg.
// From 2-9.a we know Ai(p)) =1; 1=1,2,3.
// Hence we simply copy the coefficient of A; to b
// for 1=1,2,3.
zeta(quad_dofs[1]) = mu(lin_dofs[I]);
// And Ai(pr+3) =05, Agiymeas(pr+3) =05;
// 1=1,2,3. Hence we copy 0.5 of the respective coefficients!
zeta(quad_dofs[| + 3]) =
0.5 » (mu(lin_dofs[I]) + mu(lin_dofs[(l + 1) % 3]));
1
}

return zeta;

}

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/LFPPDofHandling/mastersolution/lfppdofhandling.cc

