
C++ code 3.13.10: Alternative Implementation of contactFlux() ➺ GitLab

2 template <typename SIGMAFUNCTION>

3 double contactFluxMF (

4 std : : shared_ptr <const l f : : usca l fe : : FeSpaceLagrangeO1<double>> fe_space ,

5 const Eigen : : VectorXd &sol_vec , SIGMAFUNCTION &&sigma ,

6 const l f : : mesh : : u t i l s : : CodimMeshDataSet< int > &edgeids , i n t con tac t_ id = 0) {

7 // The underlying finite element mesh

8 const l f : : mesh : : Mesh &mesh { * (fe_space −>Mesh ()) } ;

9 // Variable for summing boundary flux

10 double s = 0 . 0 ;

11 // Counter for edges on selected contact

12 unsigned i n t ed_cnt = 0 ;

13 // Compute exterior edge-weighted normals

14 l f : : mesh : : u t i l s : : CodimMeshDataSet<Eigen : : Vector2d> normals {

15 exteriorEdgeWeightedNormals (fe_space −>Mesh ()) } ;

16 // Build a MeshFunction representing the gradient of the finite element

17 // solution

18 const l f : : fe : : MeshFunctionGradFE mf_grad (fe_space , sol_vec) ;

19 // Reference coordinates of edge midpoints of a triangle

20 const Eigen : : MatrixXd mp_refc {

21 (Eigen : : Matrix <double , 2 , 3 >() << 0.5 , 0 .5 , 0 .0 , 0 .0 , 0 .5 , 0 .5)

22 . f inished () } ;

23 // Loop over all cells

24 for (const l f : : mesh : : E n t i t y * c e l l : mesh . E n t i t i e s (0)) {

25 const l f : : base : : RefEl r e f_e l_ t ype { c e l l −>RefEl () } ;

26 LF_ASSERT_MSG(re f_e l_ t ype == l f : : base : : RefEl : : kT r ia () ,

27 " contactFlux : implemented for t r iang les only ") ;

28 // Obtain array of edge pointers (sub-entities of co-dimension 1)

29 std : : span<const l f : : mesh : : E n t i t y * const> sub_ent_range {

30 c e l l −>SubEnt i t i es (1) } ;

31 // Must be three edges

32 LF_ASSERT_MSG(sub_ent_range . size () == 3 , " Triangle must have three edges ! ") ;

33 // Obtain gradient values at midpoints of edges

34 const std : : vector <Eigen : : VectorXd> grad_at_mp { mf_grad (* c e l l , mp_refc) } ;

35 // Visit edges, check flags, and add contribution to flux integral

36 for (l f : : base : : sub_idx_t j = 0 ; j < re f_e l_ t ype . NumSubEntit ies (1) ; ++ j) {

37 const l f : : mesh : : E n t i t y &edge { * sub_ent_range [j] } ;

38 LF_ASSERT_MSG(edge . RefEl () == l f : : base : : RefEl : : kSegment () ,

39 "Not an edge ! ") ;

40 i f (edgeids (edge) == con tac t_ id) {

41 // Exterior normal vector

42 LF_ASSERT_MSG(normals . DefinedOn (edge) ,

43 "Normal vector not avai lable fo r " << edge) ;

44 const Eigen : : Vector2d n { normals (edge) } ;

45 LF_ASSERT_MSG(n . norm () > 0 , " zero normal vector ?") ;

46 const auto sigma_val { sigma ((c e l l −>Geometry ()) −>Global (mp_refc . col (j))) } ;

47 s += n . dot (sigma_val * grad_at_mp [j]) ;

48 ed_cnt ++;

49 }

50 } // end loop over edges

51 } // end loop over cells

52 std : : cout << "Summed f lux for " << ed_cnt << " edges . " << std : : endl ;

53 return s ;

54 } // end contactFluxMF

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/StationaryCurrents/mastersolution/stationarycurrents.h

