C++ code 3.13.10: Alternative Implementation of contactFlux () =* GitLab

2 | template <typename SIGMAFUNCTION>

s | double contactFluxMF (

4 std :: shared_ptr<const |f ::uscalfe :: FeSpaceLagrangeO1<double>> fe_space,
5 const Eigen::VectorXd &sol_vec, SIGMAFUNCTION &&sigma,

6 const If ::mesh:: utils :: CodimMeshDataSet<int> &edgeids, int contact_id = 0) {
7 // The underlying finite element mesh

8 const If ::mesh::Mesh &mesh{«(fe_space—>Mesh())};

9 // Variable for summing boundary flux

10 double s = 0.0;

11 // Counter for edges on selected contact

12 unsigned int ed_cnt = 0;

13 // Compute exterior edge-weighted normals

14 If ::mesh:: utils :: CodimMeshDataSet<Eigen :: Vector2d> normals{

15 exteriorEdgeWeightedNormals (fe_space->Mesh()) };

16 // Build a MeshFunction representing the gradient of the finite element
17 // solution

18 const If ::fe::MeshFunctionGradFE mf_grad(fe_space, sol_vec);

19 // Reference coordinates of edge midpoints of a triangle

20 const Eigen:: MatrixXd mp_refc{

21 (Eigen :: Matrix<double, 2, 3>() << 0.5, 0.5, 0.0, 0.0, 0.5, 0.5)

22 .finished () };

23 // Loop over all cells

24 for (const If ::mesh:: Entity =cell : mesh. Entities (0)) {

25 const If ::base::RefEl ref_el_type{cell ->RefEl() };

26 LF_ASSERT_MSG(ref_el type == If ::base::RefEl::kTria (),

27 "contactFlux: implemented for triangles only");

28 // Obtain array of edge pointers (sub-entities of co-dimension 1)

29 std ::span<const |f ::mesh:: Entity =const> sub_ent_range {

30 cell ->SubEntities (1) };

31 // Must be three edges

32 LF_ASSERT MSG(sub_ent_range.size () == 3, "Triangle must have three edges!");
33 // Obtain gradient values at midpoints of edges

34 const std::vector<Eigen::VectorXd> grad_at_mp{mf_grad(=cell , mp_refc)};
35 // Visit edges, check flags, and add contribution to flux integral

36 for (If::base::sub_idx_t j = 0; j < ref_el_type.NumSubEntities(1); ++j) {
a7 const I|f ::mesh:: Entity &edge{=sub_ent_range[j]};

38 LF_ASSERT_MSG(edge.RefElI() == If ::base:: RefEl::kSegment() ,

39 "Not an edge!");

40 if (edgeids(edge) == contact_id) {

41 // Exterior normal vector

42 LF_ASSERT_MSG(normals . DefinedOn (edge) ,

43 "Normal vector not available for " << edge);

44 const Eigen::Vector2d n{normals(edge) };

45 LF_ ASSERT MSG(n.norm() > 0, " zero normal vector ?");

46 const auto sigma_val{sigma((cell ->Geometry ())->Global(mp_refc.col(j)))};
47 s += n.dot(sigma_val = grad_at_ mp[j]);

48 ed_cnt++;

49 }

50 } // end loop over edges

51 } // end loop over cells

52 std ::cout << "Summed flux for " << ed_cnt << " edges." << std::endl;

53 return s;

s« |} // end contactFluxMF

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/StationaryCurrents/mastersolution/stationarycurrents.h

