C++ code 3.13.12: Implementation of stabFlux () = GitLab

> |template <typename SIGMAFUNCTION, typename PSIGRAD>
3 |double stabFlux (
4 std :: shared_ptr<const |f ::uscalfe :: FeSpaceLagrangeO1<double>> fe_space,
5 const Eigen::VectorXd &sol_vec, SIGMAFUNCTION &&sigma, PSIGRAD &&gradpsi) {
6 // Underlying FE mesh
7 const If ::mesh::Mesh &mesh{«(fe_space->Mesh())};
8 // Local-to-Global map for local/global shape function indices
9 const If ::assemble:: DofHandler &dofh{fe_space->LocGlobMap() };
10 // Reference coordinates of "midpoint" of a triangle
1 const Eigen:: MatrixXd zeta_ref{
12 (Eigen :: Matrix<double, 2, 1>() << 1.0 / 3.0, 1.0 / 3.0).finished()};
13 // Summation variable
14 double s = 0.0;
15 // Loop over all cells
16 for (const If ::mesh:: Entity =cell : mesh. Entities (0)) {
17 LF_ASSERT _MSG(cell ->RefEl() == If ::base:: RefEl::kTria (),
18 "Not implemented for " << «cell);
19 // Obtain geometry information for entity
20 const If ::geometry:: Geometry &geo{+cell ->Geometry () };
21 // Compute the gradients of the barycentric coordinate functions
22 const Eigen:: Matrix<double, 2, 3> grad_bary_coords{
23 GradsBaryCoords (If :: geometry :: Corners(geo)) };
24 // Compute the area of the triangle
25 const double area = If ::geometry::Volume(geo);
26 // DofHandler must provide three degrees of freedom per cell for piecewise
27 // linear Lagrangian finite elements on triangles
28 LF_ASSERT_MSG(dofh.NumLocalDofs (= cell) == 3,
29 "contactFlux: 3 dofs per triangle mandatory!");
30 // Fetch indices of global shape functions associated with triangle
31 const auto glob_dof_idx{dofh.GlobalDoflndices(=cell)};
32 // Compute (constant) local gradient of the finite element solution
33 const Eigen::Vector2d local_gradient{
34 grad_bary_coords = (Eigen::Vector3d () << sol_vec[glob_dof_idx[0]],
35 sol_vec[glob_dof_idx[1]], sol_vec[glob_dof_idx[2]])
36 .finished () };
37 // Find physical/world coordinates of "midpoint" of triangle
38 const Eigen::MatrixXd zeta{geo.Global(zeta_ref)};
39 // Add contribution of triangle
40 const auto quadnode{zeta.col(0)};
41 s += area = (gradpsi(quadnode)).dot(sigma(quadnode) = local_gradient);
42
}
43 return s;
4 |}

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/StationaryCurrents/mastersolution/stationarycurrents.h

