
C++ code 3.13.12: Implementation of stabFlux() ➺ GitLab

2 template <typename SIGMAFUNCTION, typename PSIGRAD>

3 double stabFlux (

4 std : : shared_ptr <const l f : : usca l fe : : FeSpaceLagrangeO1<double>> fe_space ,

5 const Eigen : : VectorXd &sol_vec , SIGMAFUNCTION &&sigma , PSIGRAD &&gradps i) {

6 // Underlying FE mesh

7 const l f : : mesh : : Mesh &mesh { * (fe_space −>Mesh ()) } ;

8 // Local-to-Global map for local/global shape function indices

9 const l f : : assemble : : DofHandler &dofh { fe_space −>LocGlobMap () } ;

10 // Reference coordinates of "midpoint" of a triangle

11 const Eigen : : MatrixXd ze ta_ re f {

12 (Eigen : : Matrix <double , 2 , 1 >() << 1.0 / 3 .0 , 1.0 / 3 .0) . f inished () } ;

13 // Summation variable

14 double s = 0 . 0 ;

15 // Loop over all cells

16 for (const l f : : mesh : : E n t i t y * c e l l : mesh . E n t i t i e s (0)) {

17 LF_ASSERT_MSG(c e l l −>RefEl () == l f : : base : : RefEl : : kT r ia () ,

18 "Not implemented for " << * c e l l) ;

19 // Obtain geometry information for entity

20 const l f : : geometry : : Geometry &geo { * c e l l −>Geometry () } ;

21 // Compute the gradients of the barycentric coordinate functions

22 const Eigen : : Matrix <double , 2 , 3> grad_bary_coords {

23 GradsBaryCoords (l f : : geometry : : Corners (geo)) } ;

24 // Compute the area of the triangle

25 const double area = l f : : geometry : : Volume (geo) ;

26 // DofHandler must provide three degrees of freedom per cell for piecewise

27 // linear Lagrangian finite elements on triangles

28 LF_ASSERT_MSG(dofh . NumLocalDofs (* c e l l) == 3 ,

29 " contactFlux : 3 dofs per t r iang le mandatory ! ") ;

30 // Fetch indices of global shape functions associated with triangle

31 const auto g lob_dof_ idx { dofh . GlobalDofIndices (* c e l l) } ;

32 // Compute (constant) local gradient of the finite element solution

33 const Eigen : : Vector2d l o c a l _ g r a d i e n t {

34 grad_bary_coords * (Eigen : : Vector3d () << sol_vec [g lob_dof_ idx [0]] ,

35 sol_vec [g lob_dof_ idx [1]] , sol_vec [g lob_dof_ idx [2]])

36 . f inished () } ;

37 // Find physical/world coordinates of "midpoint" of triangle

38 const Eigen : : MatrixXd zeta { geo . Global (ze ta_ re f) } ;

39 // Add contribution of triangle

40 const auto quadnode { zeta . col (0) } ;

41 s += area * (gradps i (quadnode)) . dot (sigma (quadnode) * l o c a l _ g r a d i e n t) ;

42 }

43 return s ;

44 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/StationaryCurrents/mastersolution/stationarycurrents.h

