C++ code 3.13.13: MeshFunction-based implementation of stabFlux () =* GitLab

template <typename SIGMAFUNCTION, typename PSIGRAD>
double stabFluxMF (
std :: shared_ptr<const |f ::uscalfe :: FeSpaceLagrangeO1<double>> fe_space,
const Eigen::VectorXd &sol_vec, SIGMAFUNCTION &&sigma, PSIGRAD &&gradpsi)
std :: shared_ptr<const |f ::mesh::Mesh> mesh_p{fe_space->Mesh() };
// Coefficient function and weight function
const If ::mesh:: utils :: MeshFunctionGlobal mf_sigma(sigma) ;
const If ::mesh:: utils ::MeshFunctionGlobal mf_gradpsi(gradpsi);
10 // Build a MeshFunction representing the gradient of the finite element
1 // solution
12 const If ::fe::MeshFunctionGradFE mf_grad(fe_space, sol_vec);

© ©® N o o B~ w0 N

13 // Mesh function representing the integrand

14 const auto mf_itg{If ::mesh:: utils ::transpose (mf_sigma = mf_grad) =«
15 mf_gradpsi};

16 const double s = If ::fe::IntegrateMeshFunction (

17 ~mesh_p, mf_itg, [](const I|f::mesh:: Entity &e) {

18 return If ::quad::make_QuadRule(e.RefElI(), 2);

19 }) (0, 0);

20 return s;

21 |} // end stabFluxMF

{



https://craffael.github.io/lehrfempp/group__mesh__function.html
https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/StationaryCurrents/mastersolution/stationarycurrents.h

