

C++ code 3.13.14: lf::fe::ScalarReferenceFiniteElement-based implementation of

stabFlux() ➺ GitLab

2 template <typename SIGMAFUNCTION, typename PSIGRAD>

3 double stabFluxTRF (

4 std : : shared_ptr <const l f : : usca l fe : : FeSpaceLagrangeO1<double>> fe_space ,

5 const Eigen : : VectorXd &sol_vec , SIGMAFUNCTION &&sigma , PSIGRAD &&gradps i) {

6 // Underlying FE mesh

7 const l f : : mesh : : Mesh &mesh { * (fe_space −>Mesh ()) } ;

8 // Local-to-Global map for local/global shape function indices

9 const l f : : assemble : : DofHandler &dofh { fe_space −>LocGlobMap () } ;

10 // Reference coordinates of "midpoint" of a triangle (center of gravity)

11 const Eigen : : MatrixXd ze ta_ re f {

12 (Eigen : : Matrix <double , 2 , 1 >() << 1.0 / 3 .0 , 1.0 / 3 .0) . f inished () } ;

13 // Obtain gradients of reference shape functions at center of gravity

14 const l f : : fe : : ScalarReferenceFiniteElement <double> & r e f _ l s f {

15 * fe_space −>ShapeFunctionLayout (l f : : base : : RefEl : : kT r ia ()) } ;

16 LF_ASSERT_MSG(

17 r e f _ l s f . NumRefShapeFunctions () == 3 ,

18 "There must be 3 reference shape funct ions associated with vert ices ") ;

19 const Eigen : : MatrixXd r e f _ l s f _ g r a d s {

20 r e f _ l s f . GradientsReferenceShapeFunctions (ze ta_ re f) } ;

21 LF_ASSERT_MSG(r e f _ l s f _ g r a d s . rows () == 3 , "Three gradients required ! ") ;

22 LF_ASSERT_MSG(r e f _ l s f _ g r a d s . cols () == 2 , "Two components expected ! ") ;

23 // Summation variable

24 double s = 0 . 0 ;

25 // Loop over all cells

26 for (const l f : : mesh : : E n t i t y * c e l l : mesh . E n t i t i e s (0)) {

27 LF_ASSERT_MSG(c e l l −>RefEl () == l f : : base : : RefEl : : kT r ia () ,

28 "Not implemented for " << * c e l l) ;

29 // Obtain geometry information for entity

30 const l f : : geometry : : Geometry &geo { * c e l l −>Geometry () } ;

31 // Fetch the transformation matrix for gradients

32 const Eigen : : MatrixXd JinvT { geo . JacobianInverseGramian (ze ta_ re f) } ;

33 LF_ASSERT_MSG(

34 (J invT . rows () == 2) && (JinvT . cols () == 2) ,

35 " JinvT is " << JinvT . rows () << " x " << JinvT . cols () << "−matrix ! ") ;

36 // Compute the gradients of the local shape functions by transformation

37 const auto g rad_ l s f { J invT * r e f _ l s f _ g r a d s . transpose () } ;

38 // Compute the area of the triangle

39 const double area = l f : : geometry : : Volume (geo) ;

40 // DofHandler must provide three degrees of freedom per cell for piecewise

41 // linear Lagrangian finite elements on triangles

42 LF_ASSERT_MSG(dofh . NumLocalDofs (* c e l l) == 3 ,

43 " contactFlux : 3 dofs per t r iang le mandatory ! ") ;

44 // Fetch indices of global shape functions associated with triangle

45 const auto g lob_dof_ idx { dofh . Globa lDof Ind ices (* c e l l) } ;

46 // Compute (constant) local gradient of the finite element solution

47 const Eigen : : Vector2d l o c a l _ g r a d i e n t {

48 g rad_ l s f * (Eigen : : Vector3d () << sol_vec [g lob_dof_ idx [0]] ,

49 sol_vec [g lob_dof_ idx [1]] , sol_vec [g lob_dof_ idx [2]])

50 . f inished () } ;

51 // Find physical/world coordinates of "midpoint" of triangle

52 const Eigen : : MatrixXd zeta { geo . Global (ze ta_ re f) } ;

53 // Add contribution of triangle

54 const auto quadnode { zeta . col (0) } ;

55 s += area * (gradps i (quadnode)) . dot (sigma (quadnode) * l o c a l _ g r a d i e n t) ;

56 }

return s ;

https://craffael.github.io/lehrfempp/classlf_1_1fe_1_1_scalar_reference_finite_element.html
https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/StationaryCurrents/mastersolution/stationarycurrents.h

