


C++ code 3.13.14: If::fe::ScalarReferenceFiniteElement-based implementation
stabFlux () = GitLab

© ©® N o o B~ W N

of

template <typename SIGMAFUNCTION, typename PSIGRAD>
double stabFluxTRF (
std :: shared_ptr<const |f ::uscalfe :: FeSpacelLagrangeO1<double>> fe_space,
const Eigen::VectorXd &sol_vec, SIGMAFUNCTION &&sigma, PSIGRAD &&gradpsi) {
// Underlying FE mesh
const |f ::mesh::Mesh &mesh{+(fe_space->Mesh())};
// Local-to-Global map for local/global shape function indices
const If ::assemble:: DofHandler &dofh{fe_space->LocGlobMap() };
// Reference coordinates of "midpoint" of a triangle (center of gravity)
const Eigen::MatrixXd zeta_ref{
(Eigen :: Matrix<double, 2, 1>() << 1.0 / 3.0, 1.0 / 3.0).finished()};
// Obtain gradients of reference shape functions at center of gravity
const If ::fe::ScalarReferenceFiniteElement<double> &ref_Isf{
«fe_space->ShapeFunctionLayout(If ::base:: RefEl::kTria())};
LF_ASSERT _MSG(
ref_Isf.NumRefShapeFunctions() == 3,
"There must be 3 reference shape functions associated with vertices");
const Eigen:: MatrixXd ref_Isf_grads{
ref_Isf.GradientsReferenceShapeFunctions (zeta_ref) };
LF_ASSERT MSG(ref_lIsf_grads.rows() == 3, "Three gradients required!");
LF ASSERT MSG(ref_Isf_grads.cols() == 2, "Two components expected!");
// Summation variable
double s = 0.0;
// Loop over all cells
for (const If ::mesh:: Entity =cell : mesh. Entities (0)) {
LF_ASSERT MSG(cell ->RefEl() == If ::base:: RefEl::kTria (),
"Not implemented for " << «cell);
// Obtain geometry information for entity
const If ::geometry:: Geometry &geo{+cell ->Geometry () };
// Fetch the transformation matrix for gradients
const Eigen::MatrixXd JinvT {geo.JacobianlnverseGramian(zeta_ref)};
LF_ASSERT_MSG(
(JinvT .rows () == 2) && (JinvT.cols() == 2),
"JinvT is " << JinvT.rows() << " X " << JinvT.cols() << "-matrix!");
// Compute the gradients of the local shape functions by transformation
const auto grad_Isf{JinvT = ref_Isf_grads.transpose () };
// Compute the area of the triangle
const double area = If ::geometry::Volume(geo) ;
// DofHandler must provide three degrees of freedom per cell for piecewise
// linear Lagrangian finite elements on triangles
LF_ASSERT _MSG(dofh.NumLocalDofs (= cell) == 3,
"contactFlux: 3 dofs per triangle mandatory!");
// Fetch indices of global shape functions associated with triangle
const auto glob_dof_idx{dofh.GlobalDoflndices («cell)};
// Compute (constant) local gradient of the finite element solution
const Eigen::Vector2d local_gradient{
grad_Isf = (Eigen::Vector3d () << sol_vec[glob_dof_idx[0]],
sol_vec[glob_dof_idx[1]], sol_vec[glob_dof_idx[2]])
.finished () };
// Find physical/world coordinates of "midpoint" of triangle
const Eigen::MatrixXd zeta{geo.Global(zeta_ref)};
// Add contribution of triangle
const auto quadnode{zeta.col(0)};
s += area = (gradpsi(quadnode)).doi(sigma(quadnode) = local_gradient);



https://craffael.github.io/lehrfempp/classlf_1_1fe_1_1_scalar_reference_finite_element.html
https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/StationaryCurrents/mastersolution/stationarycurrents.h

