
C++ code 3.14.14: Implementation of quasi-interpolation operator onto S0
1
(M) ➺ GitLab

2 template <typename MESHFUNCTION>

3 Eigen : : VectorXd quasi Interpolate (

4 const l f : : usca l fe : : FeSpaceLagrangeO1<double> &fe_space ,

5 MESHFUNCTION &&v_mf) {

6 // Get quadrature points and weights on the reference triangle for a

7 // quadrature rule that integrates quadratic polynomials exactly

8 l f : : quad : : QuadRule quadrule =

9 l f : : quad : : make_QuadRule (l f : : base : : RefEl : : kT r ia () , 2) ;

10 const i n t P = quadrule . NumPoints () ;

11 Eigen : : MatrixXd zeta_hat = quadrule . Po in ts () ;

12 Eigen : : VectorXd w_hat = quadrule . Weights () ;

13 // Precomputation: Cache values of (ψ̂1, ψ̂2, ψ̂3)
14 // at reference quadrature nodes. Use the formulas (3.14.4).
15 Eigen : : Matrix <double , 3 , 2> A;

16 A << −24.0 , −24.0 , 24.0 , 0 .0 , 0 .0 , 24 .0 ;

17 Eigen : : Vector3d b {18 .0 , −6.0 , −6 .0 } ;

18 auto ps i_hat = [A, b] (Eigen : : Vector2d x) −> Eigen : : Vector3d {

19 return A * x + b ;

20 } ;

21 Eigen : : MatrixXd ps i_hat_va lues (3 , P) ;

22 for (i n t l = 0 ; l < P ; ++ l) {

23 ps i_hat_va lues . col (l) = ps i_ha t (zeta_hat . col (l)) ;

24 }

25 // Retrieve the map p 7→ (Kp, j)
26 std : : shared_ptr <const l f : : mesh : : Mesh> mesh_p = fe_space . Mesh () ;

27 l f : : mesh : : u t i l s : : CodimMeshDataSet<

28 std : : pair <const l f : : mesh : : E n t i t y * , unsigned int >>

29 Kp_mesh_data_set = findKp (mesh_p) ;

30

31 const l f : : assemble : : DofHandler &dofh { fe_space . LocGlobMap () } ;

32 const i n t N = dofh . NumDofs () ;

33 // Vector for returning the basis expansion coefficients of the

34 // quasi-interpolant

35 Eigen : : VectorXd c o e f f i c i e n t s (N) ;

36 // Compute projection onto each basis function

37 for (l f : : assemble : : gdo f_ idx_ t i = 0 ; i < N; ++ i) {

38 // Get p, Kp and the local index j of p in Kp

39 const l f : : mesh : : E n t i t y &po in t = dofh . E n t i t y (i) ;

40 std : : pair <const l f : : mesh : : E n t i t y * , unsigned int > Kp_loca l index =

41 Kp_mesh_data_set (po i n t) ;

42 const l f : : mesh : : E n t i t y *Kp = Kp_loca l index . f i r s t ;

43 unsigned i n t j = Kp_loca l index . second ;

44 // Evaluate v on quadrature points in Kp

45 const std : : vector <double> v_zeta = v_mf (* Kp , zeta_hat) ;

46 // Compute integral on current triangle Kp

47 double sum = 0 . 0 ;

48 for (i n t l = 0 ; l < P ; ++ l) {

49 sum += w_hat (l) * v_zeta [l] * ps i_hat_va lues (j , l) ;

50 }

51 c o e f f i c i e n t s (i) = sum ;

52 }

53 return c o e f f i c i e n t s ;

54 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/QuasiInterpolation/mastersolution/quasiinterpolation.h

