C++ code 3.17.7: Implementation of volumeResiduals () = GitLab

© ©® N o o B~ w0 N

33

34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53

If ::mesh:: utils :: CodimMeshDataSet<double> volumeResiduals (
const dataDiscreteBVP &disc_bvp, const Eigen::VectorXd & /+u vec*/) {
// Get pointer to underlying mesh
std :: shared_ptr<const |f ::mesh::Mesh> mesh_p =
disc_bvp.pwlinfespace_p_->Mesh() ;
// Mesh data set for returning the volume residuals
If ::mesh:: utils :: CodimMeshDataSet<double> vol_res(mesh_p, 0, 0.0);
// Edge midpoint quadrature rule for triangles, which is exact for

quadratic
// polynomials and allows the exact computation of the volume residual

// contributions for piecewise linear source functions.
const If ::quad::QuadRule qgr{|f ::quad:: make_TriaQR_EdgeMidpointRule () };
const Eigen::VectorXd gw{qr.Weights() }; // quadrature weigth vector

// Run over all cells of the mesh

for (const If ::mesh:: Entity =cell : mesh_p->Entities (0)) {
LF_ASSERT MSG(cell -—>RefEl() == If ::base:: RefEl::kTria (),

"Implemented for triangles only");

// Obtain information about the shape of the cell
const If ::geometry:: Geometry &geo{=(cell ->Geometry ()) };
// Ddetermine size of triangle (length of longest edge)
const

Eigen :: MatrixXd corners{|f ::geometry ::

Corners(geo) };

const double h0O = (corners.col(1) - corners.col(0)).norm() ;
const double h1 = (corners.col(2) - corners.col(1)).norm() ;
const double h2 = (corners.col(0) - corners.col(2)).norm() ;
const double h_K = std::max({h0, h1, h2});

// I: Locally integrate the square of the source function
// Gramian determinants
const Eigen::VectorXd gram_dets{geo.IntegrationElement(qr.Points())};

// Fetch values of source function in quadrature nodes. Note

local
// reference coordinates have to be passed to the evaluation

operator of the
// MeshFunction.

const std::vector<double> f_vals{disc_bvp.mf_f_ (xcell, qr.Points())};
// Evaluation of quadrature formula
double f_sq_int = 0.0;
for (If::base::size_type | = 0; | < qr.NumPoints(); ++I) {
f_sq_int += qw[I|] = f_vals[Il] » f_vals[I] » gram_dets[I];
}
// II: Fetch prefactor depending on diffusion coefficient

// We need a "dummy point" in the reference element in order to
the
// evaluation operator for the MeshFunction.

const Eigen:: MatrixXd dummy = Eigen::Vector2d(1.0 / 3.0, 1.0 / 3.0);
const double alpha_K = disc_bvp.mf_alpha_(+cell, dummy)[0];
LF_ASSERT MSG(alpha_K > 0,

"Diffusion coefficients must be strictly positive!");
const double mu K = h_K « h_K / alpha_K;
// Store cell contribution
vol_res(xcell) = f_sq_int = mu K;

that

call

}

return vol _res;

}

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ResidualErrorEstimator/mastersolution/residualerrorestimator.cc

