
C++ code 3.17.7: Implementation of volumeResiduals() ➺ GitLab

2 l f : : mesh : : u t i l s : : CodimMeshDataSet<double> volumeResiduals (

3 const dataDiscreteBVP &disc_bvp , const Eigen : : VectorXd & /*u_vec*/) {

4 // Get pointer to underlying mesh

5 std : : shared_ptr <const l f : : mesh : : Mesh> mesh_p =

6 disc_bvp . pwlinfespace_p_ −>Mesh () ;

7 // Mesh data set for returning the volume residuals

8 l f : : mesh : : u t i l s : : CodimMeshDataSet<double> vo l_ res (mesh_p , 0 , 0 .0) ;

9

10 // Edge midpoint quadrature rule for triangles, which is exact for
quadratic

11 // polynomials and allows the exact computation of the volume residual

12 // contributions for piecewise linear source functions.

13 const l f : : quad : : QuadRule qr { l f : : quad : : make_TriaQR_EdgeMidpointRule () } ;

14 const Eigen : : VectorXd qw{ qr . Weights () } ; // quadrature weigth vector

15

16 // Run over all cells of the mesh

17 for (const l f : : mesh : : E n t i t y * c e l l : mesh_p−> E n t i t i e s (0)) {

18 LF_ASSERT_MSG(c e l l −>RefEl () == l f : : base : : RefEl : : kT r ia () ,

19 " Implemented for t r iang les only ") ;

20 // Obtain information about the shape of the cell

21 const l f : : geometry : : Geometry &geo { * (c e l l −>Geometry ()) } ;

22 // Ddetermine size of triangle (length of longest edge)

23 const Eigen : : MatrixXd corners { l f : : geometry : : Corners (geo) } ;

24 const double h0 = (corners . col (1) − corners . col (0)) . norm () ;

25 const double h1 = (corners . col (2) − corners . col (1)) . norm () ;

26 const double h2 = (corners . col (0) − corners . col (2)) . norm () ;

27 const double h_K = std : : max ({ h0 , h1 , h2 }) ;

28

29 // I: Locally integrate the square of the source function

30 // Gramian determinants

31 const Eigen : : VectorXd gram_dets { geo . In teg ra t ionE lement (qr . Po in ts ()) } ;

32 // Fetch values of source function in quadrature nodes. Note that
local

33 // reference coordinates have to be passed to the evaluation
operator of the

34 // MeshFunction.

35 const std : : vector <double> f _ v a l s { disc_bvp . mf_f_ (* c e l l , qr . Po in ts ()) } ;

36 // Evaluation of quadrature formula

37 double f _ s q _ i n t = 0 . 0 ;

38 for (l f : : base : : s ize_type l = 0 ; l < qr . NumPoints () ; ++ l) {

39 f _ s q _ i n t += qw[l] * f _ v a l s [l] * f _ v a l s [l] * gram_dets [l] ;

40 }

41 // II: Fetch prefactor depending on diffusion coefficient

42 // We need a "dummy point" in the reference element in order to call
the

43 // evaluation operator for the MeshFunction.

44 const Eigen : : MatrixXd dummy = Eigen : : Vector2d (1 .0 / 3 .0 , 1.0 / 3 .0) ;

45 const double alpha_K = disc_bvp . mf_alpha_ (* c e l l , dummy) [0] ;

46 LF_ASSERT_MSG(alpha_K > 0 ,

47 " Di f fus ion coef f i c ien ts must be s t r i c t l y pos i t ive ! ") ;

48 const double mu_K = h_K * h_K / alpha_K ;

49 // Store cell contribution

50 vo l_ res (* c e l l) = f _ s q _ i n t * mu_K;

51 }

52 return vo l_ res ;

53 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ResidualErrorEstimator/mastersolution/residualerrorestimator.cc

