

C++ code 3.17.8: Implementation of edgeResiduals() ➺ GitLab

2 l f : : mesh : : u t i l s : : CodimMeshDataSet<double> edgeResiduals (

3 const dataDiscreteBVP &disc_bvp , const Eigen : : VectorXd &u_vec) {

4 // Get pointer to underlying mesh

5 std : : shared_ptr <const l f : : mesh : : Mesh> mesh_p =

6 disc_bvp . pwlinfespace_p_ −>Mesh () ;

7 // Mesh data set for returning the volume residuals

8 l f : : mesh : : u t i l s : : CodimMeshDataSet<double> edge_res (mesh_p , 1 , 0 .0) ;

9 // Step I: Create an auxiliary MeshDataSet storing non-normalized (!)
edge

10 // normals = edge direction vectors turned by 90 degrees

11 l f : : mesh : : u t i l s : : CodimMeshDataSet<Eigen : : Vector2d> edge_normals (mesh_p , 1) ;

12 l f : : mesh : : u t i l s : : CodimMeshDataSet<Eigen : : Vector2d> edge_s ta r tp t (mesh_p , 1) ;

13 for (const l f : : mesh : : E n t i t y * edge : mesh_p−> E n t i t i e s (1)) {

14 // Obtain information about the shape of the edge

15 const l f : : geometry : : Geometry &geo { * (edge−>Geometry ()) } ;

16 const Eigen : : MatrixXd corners { l f : : geometry : : Corners (geo) } ;

17 // Starting point of the edge

18 edge_s ta r tp t (* edge) = corners . col (0) ;

19 // Direction vector of the edge

20 const Eigen : : Vector2d d i r = corners . col (1) − corners . col (0) ;

21 // Rotate counterclockwise by 90 degrees an d store

22 edge_normals (* edge) = Eigen : : Vector2d (d i r (1) , − d i r (0)) ;

23 }

24 // Step II: Compute the gradient of the finite element solution, which

25 // LehrFEM++ can do for us.

26 const l f : : fe : : MeshFunctionGradFE grad_uh (disc_bvp . pwlinfespace_p_ , u_vec) ;

27

28 // Step III: Visit the triangles of the mesh, fetch the constant(!)
gradient

29 // of the finite-element solution, multiply it with the edge normals
and the

30 // coefficient and sum the results for every edge not loacted on the

31 // bounmdary. This summation is done in an auxiliary MeshDataSet.

32 l f : : mesh : : u t i l s : : CodimMeshDataSet<double> alpha_max (mesh_p , 1 , 0 .0) ;

33 l f : : mesh : : u t i l s : : CodimMeshDataSet<double> edge_flux_jump (mesh_p , 1 , 0 .0) ;

34 l f : : mesh : : u t i l s : : CodimMeshDataSet<bool> bd_ed_f lags {

35 l f : : mesh : : u t i l s : : f lagEnt i t iesOnBoundary (mesh_p , 1) } ;

36 for (const l f : : mesh : : E n t i t y * c e l l : mesh_p−> E n t i t i e s (0)) {

37 LF_ASSERT_MSG(c e l l −>RefEl () == l f : : base : : RefEl : : kT r ia () ,

38 " Implemented for t r iang les only ") ;

39 // Retrieve constant diffusion coefficient

40 const Eigen : : MatrixXd dummy = Eigen : : Vector2d (1 .0 / 3 .0 , 1.0 / 3 .0) ;

41 const double alpha_K = disc_bvp . mf_alpha_ (* c e l l , dummy) [0] ;

42 LF_ASSERT_MSG(alpha_K > 0 ,

43 " Di f fus ion coef f i c ien ts must be s t r i c t l y pos i t ive ! ") ;

44 // Fetch scaled gradient of the finite element solution

45 const Eigen : : Vector2d nablau_K = (grad_uh (* c e l l , dummy) [0]) * alpha_K ;

46 /* Debugging output

47 std::cout << "cell " << mesh_p->Index(*cell)

48 << ": alpha*grad u_h = " << nablau_K.transpose() << std::endl;

49 */

50 // Obtain shape of cell

51 const l f : : geometry : : Geometry &ce l l_geo { * (c e l l −>Geometry ()) } ;

52 const Eigen : : MatrixXd c e l l _ v e r t { l f : : geometry : : Corners (ce l l_geo) } ;

53 // Visit all three edges of the triangle

54 std : : span<const l f : : mesh : : E n t i t y * const> edges { c e l l −>SubEnt i t i es (1) } ;

55 LF_ASSERT_MSG(edges . size () == 3 , " Triangle must have three edges ! ") ;

for (i n t l = 0 ; l < 3 ; ++ l) {

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ResidualErrorEstimator/mastersolution/residualerrorestimator.cc

