


C++ code 3.17.8: Implementation of edgeResiduals () =* GitLab

© ©® N o o B~ w0 N

29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

If ::mesh:: utils :: CodimMeshDataSet<double> edgeResiduals (

const dataDiscreteBVP &disc_bvp, const Eigen::VectorXd &u_vec) {
// Get pointer to underlying mesh
std :: shared_ptr<const |f ::mesh::Mesh> mesh_p =
disc_bvp.pwlinfespace_p_->Mesh () ;
// Mesh data set for returning the volume residuals
If ::mesh:: utils :: CodimMeshDataSet<double> edge_res(mesh_p, 1, 0.0);
// Step I: Create an auxiliary MeshDataSet storing non-normalized (!)
edge
// norgmals = edge direction vectors turned by 90 degrees
If ::mesh:: utils :: CodimMeshDataSet<Eigen :: Vector2d> edge_normals (mesh_p, 1);
If ::mesh:: utils :: CodimMeshDataSet<Eigen :: Vector2d> edge_startpt(mesh_p, 1);
for (const If ::mesh:: Entity »edge : mesh_p->Entities (1)) {
// Obtain information about the shape of the edge
const If ::geometry:: Geometry &geo{+(edge->Geometry())};
const Eigen::MatrixXd corners{|f ::geometry:: Corners(geo)};
// Starting point of the edge
edge_startpt(redge) = corners.col(0);
// Direction vector of the edge
const Eigen::Vector2d dir = corners.col(1) - corners.col(0);
// Rotate counterclockwise by 90 degrees an d store
edge_normals (xedge) = Eigen::Vector2d(dir (1), —-dir(0));
}
// Step II: Compute the gradient of the finite element solution, which
// LehrFEM++ can do for us.
const If ::fe::MeshFunctionGradFE grad_uh(disc_bvp.pwlinfespace_p_, u_vec);

// Step III: Visit the triangles of the mesh, fetch the constant (!)
gradient
// of the finite-element solution, multiply it with the edge normals |

and the
// coefficient and sum the results for every edge not loacted on the

// bounmdary. This summation 1is done in an auxiliary MeshDataSet.
If ::mesh:: utils :: CodimMeshDataSet<double> alpha_max(mesh_p, 1, 0.0);
If ::mesh:: utils :: CodimMeshDataSet<double> edge_flux_jump (mesh_p, 1, 0.0);
If ::mesh:: utils :: CodimMeshDataSet<bool> bd_ed_flags{
If ::mesh:: utils :: flagEntitiesOnBoundary (mesh_p, 1)};

for (const If ::mesh:: Entity »cell : mesh_p->Entities (0)) {

LF_ASSERT _MSG(cell ->RefEl() == If ::base:: RefEl::kTria (),

"Implemented for triangles only");

// Retrieve constant diffusion coefficient

const Eigen:: MatrixXd dummy = Eigen::Vector2d(1.0 / 3.0, 1.0 / 3.0);

const double alpha_K = disc_bvp.mf_alpha_(+cell, dummy)[0];

LF_ASSERT _MSG(alpha_K > 0,

"Diffusion coefficients must be strictly positive!");

// Fetch scaled gradient of the finite element solution

const Eigen::Vector2d nablau_K = (grad_uh(+cell, dummy)[0]) = alpha_K;

/* Debugging output

std: :cout << "cell " << mesh p—>Index(*cell)

<< ": alphaxgrad u_h = " << nablau K.transpose() << std::endl;

*/

// Obtain shape of cell

const If ::geometry:: Geometry &cell_geo {«(cell-—>Geometry())};

const Eigen::MatrixXd cell_vert{If ::geometry::Corners(cell_geo)};

// Visit all three edges of the triangle

std ::span<const |f ::mesh:: Entity ~const> edges{cell ->SubEntities (1) };

LF_ASSERT _MSG(edges.size () == 3, "Triangle must have three edges!");



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/ResidualErrorEstimator/mastersolution/residualerrorestimator.cc

