


C++ code 3.18.10: Implementation of compHierSurplusSolution () =* GitLab

© ® N o o B~ W N

32

33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55

template <typename MESHFUNCTION_ALPHA, typename MESHFUNCTION F>
Eigen ::VectorXd compHierSurplusSolution (
const MESHFUNCTION_ALPHA &mf_alpha, const MESHFUNCTION F &mf_f,
std :: shared_ptr<const |f ::uscalfe :: FeSpacelLagrangeO1<double>> fes_lin_p,
std :: shared_ptr<const |f ::uscalfe :: FeSpaceLagrangeO2<double>> fes_quad_p,
const Eigen::VectorXd &mu) ({
// References to FE space
const If ::uscalfe ::FeSpaceLagrangeO2<double> &quad_space{+fes_quad_p}
const If ::uscalfe ::FeSpaceLagrangeO1<double> &lfe_space{=fes_lin_p};
// Get references to DofHandlers
const |f ::assemble:: DofHandler &dh_quad{quad_space .LocGlobMap () };
const If ::assemble:: DofHandler &dh_Ife {Ife_space.LocGlobMap () };
LF_ASSERT_MSG(dh_Ife .Mesh() == dh_quad.Mesh() ,
"DofHandlers must be based on the same mesh");
LF_ASSERT MSG(dh_Ife .NumDofs () == mu.size (), "Vector length mismath");
// Underlying mesh
std :: shared_ptr<const |f ::mesh::Mesh> mesh_p{dh_Ife.Mesh() };
const If ::mesh::Mesh &mesh{+mesh_p};
LF_ASSERT MSG(
(dh_Ife .NumDofs () == mesh. NumEntities (2)) &&
(dh_quad.NumDofs () == mesh.NumEntities (2) + mesh. NumEntities (1)),
"#dof mismatch") ;
// Dimension of the quadratic finite element space
const If ::base::size_type N_qgdofs(dh_quad.NumDofs()) ;
// Vector for returning the result
Eigen ::VectorXd quad_surplus (N_qgdofs) ;
// Step I: Assemble full Galerkin matrix for quadratic FE
// Object for sparse matrix to be filled by cell-oriented assembly
If ::assemble:: COOMatrix<double> A(N_qdofs, N_qgdofs);

// Provider object for element matrices for scalar linear second-order
pure
// diffusion operator with variable diffusion coefficient. Uses

numerical ‘
// quadrature of order 3 and, thus, computes exact element matrices

for
// locally constant diffusion coefficient.

If ::fe :: DiffusionElementMatrixProvider<double, MESHFUNCTION_ALPHA>

elmat_builder (fes_quad_p, mf_alpha);
// Invoke cell-oriented assembly of the finite-element Galerkin matrix
If ::assemble:: AssembleMatrixLocally (0, dh_quad, dh_quad, elmat_builder, A);

// II: Assembly of right-hand-side vector in quadratic FE space

Eigen:: Matrix<double, Eigen::Dynamic, 1> phi(N_qgdofs);

phi.setZero () ;

// Assemble right-hand side vector depending on the source function f.

// Initialize object taking care of local computations on all cells.

If ::uscalfe :: ScalarLoadElementVectorProvider<double, MESHFUNCTION F>
elvec_builder(fes_quad_p, mf_f);

// Invoke assembly on cells (codim == 0)

AssembleVectorLocally (0, dh_quad, elvec_builder, phi);

// IITI.: Compute residual vector in quadratic FE space

// We take for granted that the components of mu corresponding to
nodes on the
// boundary vanish

Eigen :: VectorXd residual_quad =
phi + A.MatVecMult(-1.0, trfLinToQuad(fes_lin_p, fes_quad_p, mu));



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/HierarchicalErrorEstimator/mastersolution/hierarchicalerrorestimator.h

