C++11 code 3.1.3: Sub-problem (3-1.a): Implementation of compGalerkinMatrix ()
= GitLab

© ©® N o o B~ W N

template <typename FUNC_ALPHA, typename FUNC_GAMMA, typename FUNC_BETA>
Eigen :: SparseMatrix<double> compGalerkinMatrix (

const If ::assemble::DofHandler &lofh, FUNC_ALPHA &&alpha,
FUNC_GAMMA &&gamma, FUNC BETA &&beta) {
// obtain mesh and set up fe space (p.w. linear Lagrangian FEM)
auto mesh = dofh.Mesh() ;
auto fe_space =
std :: make_shared<If :: uscalfe :: FeSpaceLagrangeO1<double >>(mesh) ;

// get the number of degrees of freedom = dimension of FE space

const If ::base::size_type N_dofs(dofh.NumDofs()) ;

// Set up an empty sparse matrix to hold the Galerkin matrix

If ::assemble :: COOMatrix<double> A(N_dofs, N_dofs);

// Initialize ELEMENT MATRIX PROVIDER object

If ::mesh:: utils :: MeshFunctionGlobal mf_alpha{alpha};

If ::mesh:: utils :: MeshFunctionGlobal mf gamma{gamma};

If ::uscalfe :: ReactionDiffusionElementMatrixProvider elmat_builder (
fe_space, std::move(mf_alpha), std::move(mf_gamma));

// Cell-oriented assembly over the whole computational domain

If ::assemble:: AssembleMatrixLocally (0, dofh, dofh, elmat_builder, A);

// Add contributions of boundary term in the bilinear form using
// a LehrFEM++ built—in high-level ENTITY MATRIX PROVIDER class
auto bd_flags{|If ::mesh:: utils :: flagEntitiesOnBoundary (mesh, 1)};
If ::mesh:: utils :: MeshFunctionGlobal mf_beta{beta};
If ::uscalfe :: MassEdgeMatrixProvider edgemat_builder (
fe_space, std::move(mf_beta), bd_flags);
If ::assemble :: AssembleMatrixLocally (1, dofh, dofh, edgemat_builder, A);
Eigen :: SparseMatrix<double> A_crs = A.makeSparse () ;
return A_crs;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/AvgValBoundary/mastersolution/avgvalboundary.h

