
C++11 code 3.1.3: Sub-problem (3-1.a): Implementation of compGalerkinMatrix()

➺ GitLab

2 template <typename FUNC_ALPHA, typename FUNC_GAMMA, typename FUNC_BETA>

3 Eigen : : SparseMatrix <double> compGalerkinMatrix (

4 const l f : : assemble : : DofHandler &dofh , FUNC_ALPHA &&alpha ,

5 FUNC_GAMMA &&gamma, FUNC_BETA &&beta) {

6 // obtain mesh and set up fe_space (p.w. linear Lagrangian FEM)

7 auto mesh = dofh . Mesh () ;

8 auto fe_space =

9 std : : make_shared< l f : : usca l fe : : FeSpaceLagrangeO1<double >>(mesh) ;

10

11 // get the number of degrees of freedom = dimension of FE space

12 const l f : : base : : s ize_type N_dofs (dofh . NumDofs ()) ;

13 // Set up an empty sparse matrix to hold the Galerkin matrix

14 l f : : assemble : : COOMatrix<double> A(N_dofs , N_dofs) ;

15 // Initialize ELEMENT_MATRIX_PROVIDER object

16 l f : : mesh : : u t i l s : : MeshFunctionGlobal mf_alpha { alpha } ;

17 l f : : mesh : : u t i l s : : MeshFunctionGlobal mf_gamma{gamma } ;

18 l f : : usca l fe : : ReactionDiffusionElementMatrixProvider e lmat_bu i lde r (

19 fe_space , std : : move(mf_alpha) , std : : move(mf_gamma)) ;

20 // Cell-oriented assembly over the whole computational domain

21 l f : : assemble : : AssembleMatrixLocally (0 , dofh , dofh , e lmat_bu i lder , A) ;

22

23 // Add contributions of boundary term in the bilinear form using

24 // a LehrFEM++ built-in high-level ENTITY_MATRIX_PROVIDER class

25 auto bd_f lags { l f : : mesh : : u t i l s : : f lagEnt i t iesOnBoundary (mesh , 1) } ;

26 l f : : mesh : : u t i l s : : MeshFunctionGlobal mf_beta { beta } ;

27 l f : : usca l fe : : MassEdgeMatrixProvider edgemat_bui lder (

28 fe_space , std : : move(mf_beta) , bd_f lags) ;

29 l f : : assemble : : AssembleMatrixLocally (1 , dofh , dofh , edgemat_bui lder , A) ;

30 Eigen : : SparseMatrix <double> A_crs = A. makeSparse () ;

31 return A_crs ;

32 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/AvgValBoundary/mastersolution/avgvalboundary.h

