C++11 code 3.1.13: Sub-problem (3-1.9): C++ function
approxBoundaryFunctionalValues () =* GitLab

2 | std::vector<std :: pair<unsigned int, double>> approxBoundaryFunctionalValues (

3 unsigned int L) {

4 std :: vector<std :: pair<unsigned int, double>> result;

5 auto meshes = generateTestMeshSequence(L - 1);

6 int num_meshes = meshes—>NumLevels () ;

7 for (int level = 0; level < num_meshes; ++level) {

8 auto mesh_p = meshes->getMesh(level);

9

10 // Set up global FE space; lowest order Lagrangian finite elements

11 auto fe_space =

12 std :: make_shared<|f :: uscalfe :: FeSpaceLagrangeO1<double>>(mesh_p) ;

13

14 // Obtain local->global index mapping for current finite element
space

15 constplf ::assemble :: DofHandler &dofh{fe_space->LocGlobMap() };

16 const |f ::base::size_type N_dofs(dofh.NumDofs()) ;

17

18 // compute galerkin matrix with alpha = 1.0, gamma = 1.0, beta = 0.0

19 auto const_one = [](Eigen::Vector2d x) -> double { return 1.0; };

20 auto const_zero = [](Eigen::Vector2d x) —-> double { return 0.0; };

21 auto A = compGalerkinMatrix (dofh, const_one, const_one, const_zero);

22

23 // compute load vector for f(x) = x.norm()

24 auto f = [](Eigen::Vector2d x) —> double { return x.norm(); };

25 If ::mesh:: utils :: MeshFunctionGlobal mf_f{f};

26 If ::uscalfe :: ScalarLoadElementVectorProvider elvec_builder(fe_space, mf_f);

27 Eigen :: VectorXd phi(N_dofs) ;

28 phi.setZero () ;

29 AssembleVectorLocally (0, dofh, elvec_builder, phi);

30

31 // solve system of equations

32 Eigen :: SparseLU<Eigen :: SparseMatrix<double>> solver;

33 solver.compute (A) ;

34 Eigen :: VectorXd u = solver.solve(phi);

35

36 // set up weight function

37 auto w = [](Eigen::Vector2d x) —> double { return 1.0; };

38 double functional_value = compBoundaryFunctional (dofh, u, w);

39

40 result.push_back ({ N_dofs, functional_value}l);

41 }

42 return result;

43 |}



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/AvgValBoundary/mastersolution/avgvalboundary.cc

