C++11 code 3.1.15: Sub-problem (3-1.h): Extended main () function = GitLab

int main() {
// read in mesh and set up finite element space
auto mesh_factory = std::make_unique<If ::mesh:: hybrid2d :: MeshFactory >(2) ;
If ::io::GmshReader reader (std::move(mesh_factory), "meshes/square.msh");

© ©® N o o B~ w0 N

auto mesh = reader.mesh() ;

// obtain dofh for lagrangian finite element space

auto fe_space =
std :: make_shared<If :: uscalfe :: FeSpaceLagrangeO1<double>>(mesh) ;

const If ::assemble:: DofHandler &dofh{fe_space->LocGlobMap() };

// Solve test problem

Eigen ::VectorXd mu = AvgValBoundary :: solveTestProblem (dofh) ;

// compute HI1 seminorm of the solution

double h1s_norm = AvgValBoundary ::compHiseminorm(dofh, mu) ;

// compute boundary functional

auto w = [](Eigen::Vector2d x) —> double { return 1.0; };

double boundary_functional =
AvgValBoundary :: compBoundaryFunctional (dofh, mu, w);

std ::cout << "His-norm: " << his_norm << "\n";

std::cout << "F: " << boundary_functional << "\n";

auto results = AvgValBoundary ::approxBoundaryFunctionalValues (7) ;
double ground_truth = results[6].second;
std ::cout << "N_Dofs Error\n";
for (int i = 0; i < 6; i++) {
std::cout << results[i]. first <<
<< std::abs(results[i].second — ground_truth) << "\n";

}

return O;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/AvgValBoundary/mastersolution/avgvalboundary_main.cc

