C++ code 3.23.4: Function getNeumannData ()

© ©® N o o B~ w0 N

If ::mesh:: utils :: CodimMeshDataSet<double> getNeumannData (

}

std :: shared_ptr<const |If ::uscalfe ::FeSpaceLagrangeO1<double>> fe_space,
const Eigen::VectorXd &mu) {
If ::mesh:: utils :: CodimMeshDataSet<double> edge_vals(fe_space->Mesh(), 1, 0.0);
// Obtain flags indicating edges on the boundary
If ::mesh:: utils :: CodimMeshDataSet<bool> bded_flags{
If::mesh:: utils ::flagEntitiesOnBoundary (fe_space->Mesh(), 1)};
// Compute the piecewise constant gradients for all cells of the mesh
const If ::fe::MeshFunctionGradFE mf_grad_fefun (fe_space, mu);
// Reference coordinates of barycenter of mesh
Eigen :: MatrixXd refc_center = Eigen::Vector2d(1.0 / 3.0, 1.0 / 3.0);
// Loop over all cells of the mesh
for (const If ::mesh:: Entity =cell : fe_space->Mesh()->Entities (0)) {
LF_VERIFY_MSG(cell ->RefEl () == If ::base::RefEl::kTria(),
"Only triangular cells admitted!");
// Compute constant value of the gradient for the current cell
const Eigen::Vector2d grad_fefun = mf_grad_fefun(~cell, refc_center)[0];
// Visit edges of the cell and check whether they are located on the
// boundary
std ::span<const If ::mesh:: Entity »const> edges{cell ->SubEntities (1) };
int ed _cnt = 0;
for (const |f::mesh:: Entity sedge : edges) {
if (bded_flags(~edge)) {
// Edge is located on the boundary:
// Obtain exterior unit normals for the triangle, pick that belonging to
// the current edge and compute its Euclidean inner product with the
// local gradient vector.
const Eigen:: Matrix<double, 2, 4> unit_normals =
exteriorUnitNormals («(cell ->Geometry ())) ;
edge_vals (xedge) = unit_normals.col(ed_cnt).dot(grad_fefun);
}
ed_cnt++;
}
}

return edge_vals;

