
C++ code 3.23.4: Function getNeumannData()

2 l f : : mesh : : u t i l s : : CodimMeshDataSet<double> getNeumannData (

3 std : : shared_ptr <const l f : : usca l fe : : FeSpaceLagrangeO1<double>> fe_space ,

4 const Eigen : : VectorXd &mu) {

5 l f : : mesh : : u t i l s : : CodimMeshDataSet<double> edge_vals (fe_space −>Mesh () , 1 , 0 .0) ;

6 // Obtain flags indicating edges on the boundary

7 l f : : mesh : : u t i l s : : CodimMeshDataSet<bool> bded_f lags {

8 l f : : mesh : : u t i l s : : flagEntitiesOnBoundary (fe_space −>Mesh () , 1) } ;

9 // Compute the piecewise constant gradients for all cells of the mesh

10 const l f : : fe : : MeshFunctionGradFE mf_grad_fefun (fe_space , mu) ;

11 // Reference coordinates of barycenter of mesh

12 Eigen : : MatrixXd r e f c_cen te r = Eigen : : Vector2d (1 .0 / 3 .0 , 1.0 / 3 .0) ;

13 // Loop over all cells of the mesh

14 for (const l f : : mesh : : E n t i t y * c e l l : fe_space −>Mesh () −> E n t i t i e s (0)) {

15 LF_VERIFY_MSG(c e l l −>RefEl () == l f : : base : : RefEl : : kT r ia () ,

16 "Only t r iangu lar ce l l s admitted ! ") ;

17 // Compute constant value of the gradient for the current cell

18 const Eigen : : Vector2d grad_fefun = mf_grad_fefun (* c e l l , r e f c_cen te r) [0] ;

19 // Visit edges of the cell and check whether they are located on the

20 // boundary

21 std : : span<const l f : : mesh : : E n t i t y * const> edges { c e l l −>SubEntities (1) } ;

22 i n t ed_cnt = 0 ;

23 for (const l f : : mesh : : E n t i t y * edge : edges) {

24 i f (bded_f lags (* edge)) {

25 // Edge is located on the boundary:

26 // Obtain exterior unit normals for the triangle, pick that belonging to

27 // the current edge and compute its Euclidean inner product with the

28 // local gradient vector.

29 const Eigen : : Matrix <double , 2 , 4> uni t_normals =

30 exteriorUnitNormals (* (c e l l −>Geometry ())) ;

31 edge_vals (* edge) = uni t_normals . col (ed_cnt) . dot (grad_fefun) ;

32 }

33 ed_cnt ++;

34 }

35 }

36 return edge_vals ;

37 }

