
C++11 code 3.3.9: Sub-problem (3-3.f), GlobalInverseQuad(): inverting parameteriza-

tion ➺ GitLab

2 // Use corners to calculate matrix A, the translation t

3 // and the coefficient vector d

4 Eigen : : Matrix2d A(2 , 2) ;

5 A. col (0) = corner1 − corner0 ;

6 A. col (1) = corner3 − corner0 ;

7 Eigen : : Vector2d t = corner0 ;

8 Eigen : : Vector2d d = corner2 + corner0 − corner1 − corner3 ;

9

10 // Calculate the coefficients in the non-linear system of equations

11 Eigen : : Vector2d y = A. p a r t i a l P i v L u () . solve (x − t) ;

12 Eigen : : Vector2d q = A. p a r t i a l P i v L u () . solve (d) ;

13 Eigen : : Vector2d q_or th (q (1) , −q (0)) ;

14

15 // Treat exceptional cases

16 // If q vanishes

17 const double r e f _ s i z e = y . norm () ;

18 i f (q . norm () < kEPS * r e f _ s i z e) {

19 x_hat = y ;

20 } else i f (std : : abs (q (0)) < kEPS * r e f _ s i z e) {

21 x_hat (0) = y (0) ;

22 x_hat (1) = y (1) / (1 + q (1) * x_hat (0)) ;

23 } else i f (std : : abs (q (1)) < kEPS * r e f _ s i z e) {

24 x_hat (1) = y (1) ;

25 x_hat (0) = y (0) / (1 + q (0) * x_hat (1)) ;

26 } else {

27 // Generic case; solve quadratic equation

28 double a = q (0) ;

29 double b = 1 + y . dot (q_or th) ;

30 double c = −y (1) ;

31

32 auto [x_op1 , x_op2] = solveQuadraticEquation (a , b , c) ;

33 // No solution

34 i f (std : : isnan (x_op1) | | std : : isnan (x_op2)) {

35 x_hat (0) = NAN;

36 x_hat (1) = NAN;

37 } else {

38 // There is a solution

39 // Find root in the unit interval -> x_op1

40 i f ((x_op1 < 0 .) | | (x_op1 > 1 .)) {

41 i f ((x_op2 >= 0 .) && (x_op2 <= 1 .)) {

42 x_op1 = x_op2 ;

43 }

44 }

45 x_hat (1) = x_op1 ;

46 x_hat (0) = (y . dot (q_or th) + q (0) * x_hat (1)) / q (1) ;

47 }

48 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/PointEvaluationRhs/mastersolution/pointevaluationrhs.cc

