C++11 code 3.3.9: Sub-problem (3-3.f), GlobalInverseQuad():

tion = GitLab

© ©® N o o B~ W N

// Use corners to calculate matrix A, the translation t
// and the coefficient vector d

Eigen :: Matrix2d A(2, 2);

A.col(0) = corneri - corner0Q;

A.col(1) = corner3 - corner0;

Eigen::Vector2d t = corner0;

Eigen::Vector2d d = corner2 + corner0 - cornerl - corner3;

// Calculate the coefficients in the non-linear system of equations
Eigen::Vector2d y = A.partialPivLu () .solve(x - t);

Eigen::Vector2d g = A.partialPivLu () .solve(d);

Eigen::Vector2d qg_orth(q(1), —-q(0));

// Treat exceptional cases

// If g vanishes

const double ref_size = y.norm() ;

if (g.norm() < KEPS =« ref_size) {
x_hat = y;

} else if (std::abs(q(0)) < kEPS « ref_size) {
x_hat(0) = y(0);
x_hat(1) = y(1) / (1 + gq(1) = x_hat(0));

} else if (std::abs(q(1)) < KEPS « ref_size) {
x_hat(1) =y(1);
x_hat(0) = y(0) / (1 + q(0) = x_hat(1));

} else {
// Generic case; solve quadratic equation
double a = q(0);
double b = 1 + y.dot(qg_orth);
double ¢ = -y(1);

auto [x_op1, x_op2] = solveQuadraticEquation(a, b, c¢);
// No solution
if (std::isnan(x_op1) || std::isnan(x_op2)) ({

x_hat(0) = NAN;
x_hat(1) = NAN;
} else {

// There is a solution
// Find root in the unit interval —> x opl
if ((x_opl < 0.) || (x_opl > 1.)) {

if ((x_op2 >= 0.) && (x_op2 <= 1.)) {

x_opl = x_op2;

1
1
x_hat (1)
x_hat (0)

x_op1;
(y.dot(q_orth) + gq(0) = x_hat(1)) / q(1);

inverting parameteriza-

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/PointEvaluationRhs/mastersolution/pointevaluationrhs.cc

