C++11 code 3.3.12: Sub-problem (3-3.j): Implementation
DeltalocalVectorAssembler: :Eval () = GitLab

© ©® N o o B~ W N

of

Eigen :: VectorXd DeltaLocalVectorAssembler :: Eval(const If ::mesh:: Entity &cell) {

Eigen :: VectorXd result;
// get the coordinates of the corners of this cell
const If ::geometry:: Geometry «geo_ptr = cell.Geometry() ;
auto vertices = If ::geometry:: Corners(=geo_ptr) ;
Eigen:: Vector2d x_hat;
// the margin we allow when we determine wether a point is inside an
// element
const double margin = 1e-10;
if (If::base::RefEl::kTria() == cell.RefElI()) {
x_hat = PointEvaluationRhs :: GloballnverseTria(vertices, x_0);
result.resize(3);
result.setZero () ;
if (x_hat(0) <= 1 + margin && x_hat(0) >= 0 - margin &&
x_hat(1) <= 1 + margin & & x_hat(1) >= 0 - margin &&
x_hat(1) + x_hat(0) <= 1 + margin) {
already_found = true;
// Barycentric coordinates on reference triangle
result[0] = 1.0 — x_hat(0) - x_hat(1);
result[1] = x_hat(0);
result[2] x_hat (1) ;
}
} else if (If::base::RefEl::kQuad() == cell.RefEI()) {
x_hat = PointEvaluationRhs :: GloballnverseQuad (vertices, x_0);
result.resize (4);
result.setZero () ;
if (x_hat(0) <= 1 + margin && x_hat(0) >= 0 - margin &&
x_hat(1) <= 1 + margin && x_hat(1) >= 0 - margin) {
already_found = true;
// Local shape functions on unit square

result[0] = (1.0 — x_hat(0)) = (1.0 - x_hat(1));
result[1] = x_hat(0) = (1.0 - x_hat(1));
result[2] = x_hat(0) = x_hat(1);
result[3] = (1.0 - x_hat(0)) = x_hat(1);
}
} else {

LF_ASSERT_MSG (
false, "Function only defined for triangular or quadrilateral cells");

}

return result;

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/PointEvaluationRhs/mastersolution/pointevaluationrhs.cc

