C++11 code 3.3.15: Sub-problem (3-3.m): Implementation
normsSolutionPointLoadDirichletBVP () = GitLab

© ©® N o o B~ W N

of

// Assemble matrix A

If ::assemble :: COOMatrix<double> A(N_dofs, N_dofs);

If ::uscalfe ::LinearFELaplaceElementMatrix loc_mat_laplace {};

If ::assemble:: AssembleMatrixLocally (0, dofh, dofh, loc_mat_laplace, A);
// Build rhs vector using dedicated ENTITY VECTOR PROVIDER

Eigen :: VectorXd rhs(N_dofs) ;

rhs.setZero() ;

PointEvaluationRhs :: DeltaLocalVectorAssembler myvec_pro(source_point);
If ::assemble:: AssembleVectorLocally (0, dofh, myvec_pro, rhs);

// Enforce Dirichlet boundary conditions
const double boundary_val = 0; // zero Dirichlet boundary conditions
auto bd_flags{If ::mesh:: utils ::flagEntitiesOnBoundary (dofh.Mesh(), 2)};
auto my_selector = [&dofh, &bd_flags, &boundary_val](unsigned int dof_idx) {
if (bd_flags(dofh.Entity (dof_idx))) {
return (std::pair<bool, double>(true, boundary_val));
} // interior node: the value we return here does not matter
return (std::pair<bool, double>(false, 42.0));
b

If ::assemble:: FixFlaggedSolutionComponents <double>(my_selector, A, rhs);

// Solve linear system of equations Axx = rhs

const Eigen::SparseMatrix<double> A_crs(A.makeSparse() ) ;
Eigen :: SparseLU<Eigen :: SparseMatrix<double>> solver;
solver.compute (A_crs) ;

if (solver.info() == Eigen::Success) ({
sol_vec = solver.solve(rhs);
} else {

LF_ASSERT MSG(false, "Eigen Factorization failed");
}



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/PointEvaluationRhs/mastersolution/pointevaluationrhs.cc

