
C++11 code 3.7.9: Sub-problem (3-7.g): Auxiliary function for specialized assembly on a

tensor-product triangular mesh. ➺ GitLab

2 Eigen : : SparseMatrix <double> assemble (i n t M, const Eigen : : Matrix3d &B_K) {

3 i n t M2 = M * M;

4 Eigen : : SparseMatrix <double> A(M2, M2) ;

5 double near_ne ighbour_con t r ibu t ion = 2.0 * B_K(0 , 1) ;

6 double f a r_ne ighbou r_con t r i bu t i on = 2.0 * B_K(1 , 2) ;

7 double s e l f _ c o n t r i b u t i o n = 2.0 * (B_K(0 , 0) + B_K(1 , 1) + B_K(2 , 2)) ;

8

9 std : : vector <double> c o n t r i b u t i o n = {

10 f a r_ne ighbour_con t r i bu t i on , near_ne ighbour_cont r ibu t ion ,

11 near_ne ighbour_cont r ibu t ion , s e l f _ c o n t r i b u t i o n ,

12 near_ne ighbour_cont r ibu t ion , near_ne ighbour_cont r ibu t ion ,

13 f a r_ne ighbou r_con t r i bu t i on } ;

14

15 std : : vector <Eigen : : Vector2 i > s h i f t = { { −1 , −1} , {0 , −1} , { −1 , 0 } , {0 , 0 } ,

16 {1 , 0 } , {0 , 1 } , {1 , 1 } } ;

17

18 std : : vector <Eigen : : Tr ip le t <double>> t r i p l e t L i s t ;

19 for (i n t i = 0 ; i < M; ++ i) {

20 for (i n t j = 0 ; j < M; ++ j) {

21 Eigen : : Vec to r2 i s e l f = Eigen : : Vec to r2 i (i , j) ;

22 for (i n t k = 0; k < 7; ++k) {

23 Eigen : : Vec to r2 i o ther = s e l f + s h i f t [k] ;

24 i f (0 <= other (0) && other (0) < M && 0 <= other (1) && other (1) < M) {

25 t r i p l e t L i s t . push_back (Eigen : : Tr ip le t <double >(

26 s e l f (0) + M * s e l f (1) , o ther (0) + M * other (1) , c o n t r i b u t i o n [k])) ;

27 }

28 }

29 }

30 }

31 A. setFromTriplets (t r i p l e t L i s t . begin () , t r i p l e t L i s t . end ()) ;

32 return A;

33 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/MaximumPrinciple/mastersolution/maximumprinciple.cc

