

C++ code 3.8.7: Function solveImpedanceBVP: Assembly of right-hand-side vector and

solution of linear system of equations. ➺ GITHUB

2 // I.iii : Computing right-hand side vector

3 // Right-hand side source function f

4 auto mf_f = l f : : mesh : : u t i l s : : MeshFunctionGlobal (

5 [] (Eigen : : Vector2d x) −> double { return 0 . 0 ; }) ;

6 l f : : usca l fe : : ScalarLoadElementVectorProvider <double , decltype (mf_f) >

7 e l vec_bu i l de r (fe_space_p , mf_f) ;

8 // Invoke assembly on cells (codim == 0)

9 AssembleVectorLocally (0 , dofh , e l vec_bu i lde r , ph i) ;

10

11 // I.iv : Imposing essential boundary conditions

12 // Dirichlet data

13 auto mf_g = l f : : mesh : : u t i l s : : MeshFunctionGlobal (

14 [&g] (Eigen : : Vector2d x) −> double { return g . dot (x) ; }) ;

15 // Inspired by the example in the documentation of

16 // InitEssentialConditionFromFunction()

17 //

https://craffael.github.io/lehrfempp/namespacelf_1_1uscalfe.html#a5afbd94919f0382cf3

18 // Creating a predicate that will guarantee that the computations are carried

19 // only on the exterior boundary edges of the mesh using the boundary flags

20 auto edges_p red i ca te_D i r i ch le t =

21 [& bd_f lags] (const l f : : mesh : : E n t i t y &edge) −> bool {

22 i f (bd_f lags (edge)) {

23 auto endpoints = l f : : geometry : : Corners (* (edge . Geometry ())) ;

24 i f (endpoints (0 , 0) <= 0.05 | | 0.95 <= endpoints (0 , 0) | |

25 endpoints (1 , 0) <= 0.05 | | 0.95 <= endpoints (1 , 0)) {

26 return true ;

27 }

28 }

29 return fa lse ;

30 } ;

31 // Determine the fixed dofs on the boundary and their values

32 // Alternative: See lecturedemoDirichlet() in

33 //

https://github.com/craffael/lehrfempp/blob/master/examples/lecturedemos/lecturedemoa

34 auto edges_ f l ag_va lues_D i r i ch le t { l f : : fe : : I n i tEssen t i a lCond i t i onFromFunc t i on (

35 * fe_space_p , edges_pred ica te_D i r i ch le t , mf_g) } ;

36 // Eliminate Dirichlet dofs from the linear system

37 l f : : assemble : : FixFlaggedSolut ionCompAlt <double >(

38 [& edges_ f l ag_va lues_D i r i ch le t] (l f : : assemble : : g l b _ i d x _ t gdof_ idx) {

39 return edges_ f l ag_va lues_D i r i ch le t [gdof_ idx] ;

40 } ,

41 A, ph i) ;

42

43 // Assembly completed! Convert COO matrix A into CRS format using Eigen’s

44 // internal conversion routines.

45 Eigen : : SparseMatrix <double> A_sparse = A. makeSparse () ;

46

47 // II : SOLVING THE LINEAR SYSTEM

48 // II.i : Setting up Eigen’s sparse direct elimination

49 Eigen : : SparseLU<Eigen : : SparseMatrix <double>> so l ve r ;

50 so l ve r . compute (A_sparse) ;

51 LF_VERIFY_MSG(so l ve r . i n f o () == Eigen : : Success , "LU decomposition fa i l ed ") ;

52 // II.ii : Solving

53 d i s c r e t e _ s o l u t i o n = so l ve r . solve (ph i) ;

54 LF_VERIFY_MSG(so l ve r . i n f o () == Eigen : : Success , " Solving LSE fa i l ed ") ;

https://github.com/erickschulz/NPDECODES/blob/master/homeworks/OutputImpedanceBVP/mastersolution/outputimpedancebvp.cc

