

C++ code 3.8.7: Function solveImpedanceBVP: Assembly of right-hand-side vector and
solution of linear system of equations. = GITHUB

© ©® N o o B~ W N

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

// II : SOLVING THE LINEAR SYSTEM

// I.111 : Computing right-hand side vector

// Right-hand side source function f

auto mf_f = If ::mesh:: utils :: MeshFunctionGlobal (
[1(Eigen::Vector2d x) —> double { return 0.0; });

If ::uscalfe :: ScalarLoadElementVectorProvider<double, decltype(mf_f)>
elvec_builder (fe_space_p, mf_f);

// Invoke assembly on cells (codim == 0)

AssembleVectorLocally (0, dofh, elvec_builder, phi);

// I.iv : Imposing essential boundary conditions
// Dirichlet data
auto mf_g = If ::mesh:: utils :: MeshFunctionGlobal (
[&g](Eigen ::Vector2d x) —> double { return g.dot(x); });
// Inspired by the example in the documentation of
// InitEssentialConditionFromFunction()
/7
https://craffael.github. io/lehrfempp/namespacelf 1 _luscalfe.html#a5arbd94919f038.
// Creating a predicate that will guarantee that the computations are carried
// only on the exterior boundary edges of the mesh using the boundary flags
auto edges_predicate_Dirichlet =
[&bd_flags](const |f ::mesh:: Entity &edge) —> bool {
if (bd_flags(edge)) {
auto endpoints = If ::geometry:: Corners (+(edge.Geometry())
if (endpoints(0, 0) <= 0.05 || 0.95 <= endpoints(0, 0) ||
endpoints(1, 0) <= 0.05 || 0.95 <= endpoints(1, 0)) {
return true;
}
}
return false;
¥
// Determine the fixed dofs on the boundary and their values
// Alternative: See lecturedemoDirichlet () in

//

)

pctf

https://github.com/craffael/lehrfempp/blob/master/examples/lecturedemos/lecturedemc

auto edges_flag_values_Dirichlet{If ::fe::InitEssentialConditionFromFunction (
«fe_space_p, edges_predicate_Dirichlet, mf_g)};
// Eliminate Dirichlet dofs from the linear system
If ::assemble :: FixFlaggedSolutionCompAlt<double >(
[&edges_flag_values_Dirichlet](If ::assemble::glb_idx_t gdof_idx) {
return edges_flag_values_Dirichlet[gdof_idx];

b
A, phi);

// Assembly completed! Convert COO matrix A into CRS format using Eigen’s
// internal conversion routines.
Eigen:: SparseMatrix<double> A_sparse = A.makeSparse () ;

// IT.1 : Setting up Eigen’s sparse direct elimination

Eigen :: SparseLU<Eigen :: SparseMatrix<double>> solver;

solver.compute (A_sparse) ;

LF_VERIFY_MSG(solver.info () == Eigen::Success, "LU decomposition failed");
// IT.ii : Solving

discrete_solution = solver.solve(phi);

LF_VERIFY_MSG(solver.info () == Eigen::Success, "Solving LSE failed");

https://github.com/erickschulz/NPDECODES/blob/master/homeworks/OutputImpedanceBVP/mastersolution/outputimpedancebvp.cc

