
C++ code 3.8.20: Implementation class EvalResponse. ➺ GITHUB

2 EvalResponse : : EvalResponse (

3 const std : : shared_ptr < l f : : usca l fe : : FeSpaceLagrangeO1<double>> &fe_space_p) {

4 // Basis vectors for 2D Euclidean space ("unit vectors")

5 Eigen : : Vector2d e0 { 1 . 0 , 0 . 0 } , e1 { 0 . 0 , 1 . 0 } ;

6 // Compute approximate solutions

7 Eigen : : VectorXd approx_sol_e0 , approx_sol_e1 ;

8 approx_sol_e0 = solveImpedanceBVP (fe_space_p , e0) ;

9 approx_sol_e1 = solveImpedanceBVP (fe_space_p , e1) ;

10 // Initialize the

11 F_Mat_ (0 , 0) = computeBoundaryOutputFunctional (approx_sol_e0 , fe_space_p , e0) ;

12 F_Mat_ (0 , 1) = computeBoundaryOutputFunctional (approx_sol_e1 , fe_space_p , e0) ;

13 F_Mat_ (1 , 0) = computeBoundaryOutputFunctional (approx_sol_e0 , fe_space_p , e1) ;

14 F_Mat_ (1 , 1) = computeBoundaryOutputFunctional (approx_sol_e1 , fe_space_p , e1) ;

15 }

16

17 /* Operator overloading */

18 double EvalResponse : : operator () (Eigen : : Vector2d g , Eigen : : Vector2d d) const {

19 double value ;

20 value = d . dot (F_Mat_ * g) ;

21 return value ;

22 }

https://github.com/erickschulz/NPDECODES/blob/master/homeworks/OutputImpedanceBVP/mastersolution/outputimpedancebvp.cc

