

C++ code 3.9.11: Implementation of Eval () method of VectorProjectionMatrixProvider

= GITHUB

2 | Eigen :: MatrixXd VectorProjectionMatrixProvider :: Eval(

3 const |f ::mesh:: Entity &entity) ({

4 Eigen :: MatrixXd elMat_vec; // element matrix to be returned

5 // Throw error in case cell is not Tria nor Quad

6 LF_VERIFY_MSG(entity . RefEI() == If ::base::RefEl::kTria() ||

7 entity . RefEI () == If ::base::RefEl::kQuad() ,

8 "Unsupported cell type " << entity.RefEl());

9

10 if (entity.RefElI() == If ::base::RefEl::kTria()) {

11 elMat_vec = Eigen:: MatrixXd ::Zero(6, 6);

12 // For TRIANGULAR CELLS

13 // Compute the area of the triangle cell

14 const double area = If ::geometry::Volume (=(entity .Geometry()));

15 // Assemble the mass element matrix over the cell

16 // clang-format off

17 elMat_vec << 2.0, 0.0, 1.0, 0.0, 1.0, 0.0,

18 0.0, 2.0, 0.0, 1.0, 0.0, 1.0,

19 1.0, 0.0, 2.0, 0.0, 1.0, 0.0,

20 0.0, 1.0, 0.0, 2.0, 0.0, 1.0,

21 1.0, 0.0, 1.0, 0.0, 2.0, 0.0,

22 0.0, 1.0, 0.0, 1.0, 0.0, 2.0;

23 // clang-format on

24 elMat_vec *= area / 12.0;

25 } else {

26 // for QUADRIIATERAL CELLS

27 elMat_vec = Eigen:: MatrixXd ::Zero(8, 8);

28 Eigen :: MatrixXd elMat_scal =

29 Eigen :: MatrixXd ::Zero(4, 4); // element matrix for scalar FEM
30 // Tensor product Gauss-Legendre quadrature rule of order 4

31 const If ::quad::QuadRule qr{

32 If ::quad::make_QuadRule(If ::base:: RefEl::kQuad(), 3)};

33 // Reference quadrature points

34 const Eigen::MatrixXd zeta_ref{qr.Points () };

35 // Quadrature welghts

36 const Eigen::VectorXd w_ref{qr.Weights() };

37 // Number of quadrature points

38 const If ::base::size_type P = gr.NumPoints () ;

39

40 // Reference tensor product basis functions on quadrilateral ref entity
41 std :: vector<std :: function <double (coord_t)>> ref_basis_vec;

42 auto b0 _ref = [](coord_t x) —> double { return (1 - x()y) « (1 = x(1));
43 auto b1_ref = [](coord_t x) —> double { return x(0) =« (1 - x(1)); };
44 auto b2_ref = [](coord_t x) —> double { return x(0) = x(1); };

45 auto b3_ref = [](coord_t x) —> double { return (1 - x(0)) = x(1); };
46 ref_basis_vec.push_back(b0_ref);

47 ref_basis_vec.push_back(b1_ref);

48 ref_basis_vec.push_back(b2_ref);

49 ref_basis_vec.push_back(b3_ref);

50

51 const If ::geometry:: Geometry &geo{«(entity .Geometry())};

52 const Eigen::VectorXd gram_dets{geo.IntegrationElement(zeta_ref)};
53 for (int i = 0; i < 4; i++) {

54 for (int j = 0; j < 4; j++) {

55 for (int | = 0; | < P; I++) {

56 elMat_scal (i, j) += w_ref[l] = ref_basis_vec[i](zeta_ref.col(l))

*

1

https://github.com/erickschulz/NPDECODES/blob/master/homeworks/ZienkiewiczZhuEstimator/mastersolution/zienkiewiczzhuestimator.cc

