

C++ code 3.9.11: Implementation of Eval() method of VectorProjectionMatrixProvider

➺ GITHUB

2 Eigen : : MatrixXd Vec to rP ro jec t i onMa t r i xP rov ide r : : Eval (

3 const l f : : mesh : : E n t i t y & e n t i t y) {

4 Eigen : : MatrixXd elMat_vec ; // element matrix to be returned

5 // Throw error in case cell is not Tria nor Quad

6 LF_VERIFY_MSG(e n t i t y . RefEl () == l f : : base : : RefEl : : kT r ia () | |

7 e n t i t y . RefEl () == l f : : base : : RefEl : : kQuad () ,

8 "Unsupported ce l l type " << e n t i t y . RefEl ()) ;

9

10 i f (e n t i t y . RefEl () == l f : : base : : RefEl : : kT r ia ()) {

11 elMat_vec = Eigen : : MatrixXd : : Zero (6 , 6) ;

12 // For TRIANGULAR CELLS

13 // Compute the area of the triangle cell

14 const double area = l f : : geometry : : Volume (* (e n t i t y . Geometry ())) ;

15 // Assemble the mass element matrix over the cell

16 // clang-format off

17 elMat_vec << 2.0 , 0 .0 , 1 .0 , 0 .0 , 1 .0 , 0 .0 ,

18 0.0 , 2 .0 , 0 .0 , 1 .0 , 0 .0 , 1 .0 ,

19 1.0 , 0 .0 , 2 .0 , 0 .0 , 1 .0 , 0 .0 ,

20 0.0 , 1 .0 , 0 .0 , 2 .0 , 0 .0 , 1 .0 ,

21 1.0 , 0 .0 , 1 .0 , 0 .0 , 2 .0 , 0 .0 ,

22 0.0 , 1 .0 , 0 .0 , 1 .0 , 0 .0 , 2 . 0 ;

23 // clang-format on

24 elMat_vec *= area / 12 .0 ;

25 } else {

26 // for QUADRILATERAL CELLS

27 elMat_vec = Eigen : : MatrixXd : : Zero (8 , 8) ;

28 Eigen : : MatrixXd elMat_scal =

29 Eigen : : MatrixXd : : Zero (4 , 4) ; // element matrix for scalar FEM

30 // Tensor product Gauss-Legendre quadrature rule of order 4

31 const l f : : quad : : QuadRule qr {

32 l f : : quad : : make_QuadRule (l f : : base : : RefEl : : kQuad () , 3) } ;

33 // Reference quadrature points

34 const Eigen : : MatrixXd ze ta_ re f { qr . Po in ts () } ;

35 // Quadrature weights

36 const Eigen : : VectorXd w_ref { qr . Weights () } ;

37 // Number of quadrature points

38 const l f : : base : : s ize_type P = qr . NumPoints () ;

39

40 // Reference tensor product basis functions on quadrilateral ref entity

41 std : : vector <std : : f unc t i on <double (coord_t) >> re f_bas is_vec ;

42 auto b0_ref = [] (coord_t x) −> double { return (1 − x (0)) * (1 − x (1)) ; } ;

43 auto b1_ref = [] (coord_t x) −> double { return x (0) * (1 − x (1)) ; } ;

44 auto b2_ref = [] (coord_t x) −> double { return x (0) * x (1) ; } ;

45 auto b3_ref = [] (coord_t x) −> double { return (1 − x (0)) * x (1) ; } ;

46 re f_bas is_vec . push_back (b0_ref) ;

47 re f_bas is_vec . push_back (b1_ref) ;

48 re f_bas is_vec . push_back (b2_ref) ;

49 re f_bas is_vec . push_back (b3_ref) ;

50

51 const l f : : geometry : : Geometry &geo { * (e n t i t y . Geometry ()) } ;

52 const Eigen : : VectorXd gram_dets { geo . In teg ra t ionE lement (ze ta_ re f) } ;

53 for (i n t i = 0 ; i < 4 ; i ++) {

54 for (i n t j = 0 ; j < 4 ; j ++) {

55 for (i n t l = 0 ; l < P ; l ++) {

56 elMat_scal (i , j) += w_ref [l] * re f_bas is_vec [i] (ze ta_ re f . col (l)) *

re f_bas is_vec [j] (ze ta_ re f . col (l)) gram_dets [l] ;

https://github.com/erickschulz/NPDECODES/blob/master/homeworks/ZienkiewiczZhuEstimator/mastersolution/zienkiewiczzhuestimator.cc

