C++ code 3.9.18: Implementation of Eval () method of VectorProjectionMatrixProvider
-> GITHUB

© ©® N o o B~ W N

Eigen :: VectorXd computeLumpedProjection (
const |f ::assemble::DofHandler &scal _dofh, const Eigen::VectorXd &mu,
const If ::assemble:: DofHandler &vec_dofh) {
// Obtain shared ptr to mesh
std :: shared_ptr<const |f ::mesh::Mesh> mesh_p = scal_dofh.Mesh() ;
// Dimension of vector-valued finite element space
const If::uscalfe::size_type N_vec_dofs(vec_dofh.NumDofs()) ;
// Initialize vector FE basis expansion coefficient vector with zeros
Eigen ::VectorXd proj_vec(N_vec_dofs) ;
proj_vec.setZero () ;
// Initialize temporary helper nodal DataSet (codim 2)
auto nodal_sum_of_areas =
If ::mesh:: utils :: CodimMeshDataSet<double>(mesh_p, 2, 0.0);

// Loop over the triangular cells of the mesh in the spirit of
// cell oriented assembly
for (const If ::mesh:: Entity =cell : mesh_p->Entities (0)) {
LF_VERIFY_MSG(cell ->RefEl () == If ::base::RefEl::kTria(),
"Unsupported cell type " << cell->RefEl());
// Obtain global scalar-FE indices of the vertices
const auto scal_dof_idx_vec = scal_dofh.GlobalDoflndices (*cell);
// Obtain the gradients of the barycentric coordinate functions
const Eigen:: Matrix<double, 2, 3> elgrad_Mat = gradbarycoordinates(xcell);
// Obtain area of the triangular cell
const double area = |If ::geometry::Volume (=(cell ->Geometry()));
// Compute the gradient of the passed coefficient vector
const Eigen::Vector2d grad_mu =
elgrad_Mat.col(0) « mu(scal_dof_idx_vec[0]) +
elgrad_Mat.col (1) « mu(scal_dof_idx_vec[1]) +
elgrad_Mat.col(2) = mu(scal_dof_idx_vec[2]) ;
// Local contribution to the area of the cell patch surrounding a node
for (const If ::mesh:: Entity =node : cell-—>SubEntities(2)) ({
LF_VERIFY_MSG(node->RefEl () == If ::base:: RefEl:: kPoint(),
"Expected kPoint type!" << node->RefEl());
auto vec_dofh_idx = vec_dofh.GlobalDoflndices (=node) ;
proj_vec[vec_dofh_idx[0]] += area = grad_mu[O0];
proj_vec[vec_dofh_idx[1]] += area = grad_mu[1];
nodal_sum_of_areas (»node) = nodal_sum_of_areas(»node) + area;
}
}

// Scaling of components of vector of dofs

for (const If ::mesh:: Entity =node : mesh_p->Entities (2)) {
LF_VERIFY_MSG (node->RefEl () == If ::base:: RefEl::kPoint(),

"Expected kPoint type!" << node->RefEl());

const double area_scal_fac = 1.0 / nodal_sum_of_areas («node) ;
auto vec_dofh_idx = vec_dofh.GlobalDoflndices (*node) ;
proj_vec[vec_dofh_idx[0]] == area_scal_fac;
proj_vec[vec_dofh_idx[1]] == area_scal_fac;

}

return proj_vec;

}; // computeLumpedProjection

https://github.com/erickschulz/NPDECODES/blob/master/homeworks/ZienkiewiczZhuEstimator/mastersolution/zienkiewiczzhuestimator.cc

