
C++ code 3.9.18: Implementation of Eval() method of VectorProjectionMatrixProvider

➺ GITHUB

2 Eigen : : VectorXd computeLumpedProjection (

3 const l f : : assemble : : DofHandler &scal_dofh , const Eigen : : VectorXd &mu,

4 const l f : : assemble : : DofHandler &vec_dofh ) {

5 // Obtain shared_ptr to mesh

6 std : : shared_ptr <const l f : : mesh : : Mesh> mesh_p = scal_dofh . Mesh ( ) ;

7 // Dimension of vector-valued finite element space

8 const l f : : usca l fe : : s ize_type N_vec_dofs ( vec_dofh . NumDofs ( ) ) ;

9 // Initialize vector FE basis expansion coefficient vector with zeros

10 Eigen : : VectorXd pro j_vec ( N_vec_dofs ) ;

11 pro j_vec . setZero ( ) ;

12 // Initialize temporary helper nodal DataSet (codim 2)

13 auto nodal_sum_of_areas =

14 l f : : mesh : : u t i l s : : CodimMeshDataSet<double >(mesh_p , 2 , 0 .0 ) ;

15

16 // Loop over the triangular cells of the mesh in the spirit of

17 // cell oriented assembly

18 for ( const l f : : mesh : : E n t i t y * c e l l : mesh_p−> E n t i t i e s ( 0 ) ) {

19 LF_VERIFY_MSG( c e l l −>RefEl ( ) == l f : : base : : RefEl : : kT r ia ( ) ,

20 "Unsupported ce l l type " << c e l l −>RefEl ( ) ) ;

21 // Obtain global scalar-FE indices of the vertices

22 const auto sca l_dof_ idx_vec = scal_dofh . GlobalDofIndices ( * c e l l ) ;

23 // Obtain the gradients of the barycentric coordinate functions

24 const Eigen : : Matrix <double , 2 , 3> elgrad_Mat = gradbarycoordinates ( * c e l l ) ;

25 // Obtain area of the triangular cell

26 const double area = l f : : geometry : : Volume ( * ( c e l l −>Geometry ( ) ) ) ;

27 // Compute the gradient of the passed coefficient vector

28 const Eigen : : Vector2d grad_mu =

29 elgrad_Mat . col ( 0 ) * mu( sca l_dof_ idx_vec [ 0 ] ) +

30 elgrad_Mat . col ( 1 ) * mu( sca l_dof_ idx_vec [ 1 ] ) +

31 elgrad_Mat . col ( 2 ) * mu( sca l_dof_ idx_vec [ 2 ] ) ;

32 // Local contribution to the area of the cell patch surrounding a node

33 for ( const l f : : mesh : : E n t i t y * node : c e l l −>SubEnt i t i es ( 2 ) ) {

34 LF_VERIFY_MSG( node−>RefEl ( ) == l f : : base : : RefEl : : kPo in t ( ) ,

35 "Expected kPoint type ! " << node−>RefEl ( ) ) ;

36 auto vec_dofh_idx = vec_dofh . GlobalDofIndices ( * node ) ;

37 pro j_vec [ vec_dofh_idx [ 0 ] ] += area * grad_mu [ 0 ] ;

38 pro j_vec [ vec_dofh_idx [ 1 ] ] += area * grad_mu [ 1 ] ;

39 nodal_sum_of_areas ( * node ) = nodal_sum_of_areas ( * node ) + area ;

40 }

41 }

42

43 // Scaling of components of vector of dofs

44 for ( const l f : : mesh : : E n t i t y * node : mesh_p−> E n t i t i e s ( 2 ) ) {

45 LF_VERIFY_MSG( node−>RefEl ( ) == l f : : base : : RefEl : : kPo in t ( ) ,

46 "Expected kPoint type ! " << node−>RefEl ( ) ) ;

47 const double area_scal_ fac = 1.0 / nodal_sum_of_areas ( * node ) ;

48 auto vec_dofh_idx = vec_dofh . GlobalDofIndices ( * node ) ;

49 pro j_vec [ vec_dofh_idx [ 0 ] ] *= area_scal_ fac ;

50 pro j_vec [ vec_dofh_idx [ 1 ] ] *= area_scal_ fac ;

51 }

52 return pro j_vec ;

53 } ; // computeLumpedProjection

https://github.com/erickschulz/NPDECODES/blob/master/homeworks/ZienkiewiczZhuEstimator/mastersolution/zienkiewiczzhuestimator.cc

