C++ code 3.9.20: Implementation of computeL2Deviation () =* GITHUB

2 |double computeL2Deviation(const If ::assemble:: DofHandler &scal_dofh,
3 const Eigen::VectorXd &eta,

4 const If ::assemble:: DofHandler &vec_dofh,
5 const Eigen::VectorXd &amma) {

6 double deviation_norm_value = 0.0; // For retrurning the result

7 // Obtain shared ptr to mesh

8 auto mesh_p = scal_dofh.Mesh() ;

9 // Cell-oriented computation of deviation norm (squared)

10 for (const If ::mesh:: Entity =cell : mesh_p->Entities (0)) {

11 LF_VERIFY_MSG(cell -—>RefEl () == If ::base::RefEl:: kTria(),

12 "Unsupported cell type " << cell->RefEl());

13 // Obtain area of the triangular cell

14 const double area = If ::geometry::Volume (=(cell ->Geometry()));

15

16 // Obtain global scalar-FE indices of the vertices

17 auto scal_dof_idx_vec = scal_dofh.GlobalDoflndices (xcell);

18 // Obtain the gradients of the barycentric coordinates functions
19 Eigen:: Matrix<double, 2, 3> elgrad_Mat = gradbarycoordinates (=cell);
20 |// Compute the gradient of the passed coefficient vector eta

21 const Eigen::Vector2d grad_eta =

22 elgrad_Mat.col(0) « eta(scal_dof_idx_vec[0]) +

23 elgrad_Mat.col (1) « eta(scal_dof_idx_vec[1]) +

24 elgrad_Mat.col(2) = eta(scal_dof_idx_vec[2]);

25

26 // Obtaining the values of the passed vector at each node

27 std :: vector<Eigen :: Vector2d> r_vec_values;

28 for (const If ::mesh:: Entity =node : cell-—>SubEntities(2)) {

29 LF_VERIFY_MSG (node->RefEl () == If ::base:: RefEl::kPoint(),

30 "Expected kPoint type!" << node->RefEl());

31 auto vec_dofh_idx = vec_dofh.GlobalDoflndices (*node) ;

32 Eigen :: Vector2d r_vec_at_node;

33 r_vec_at_node[0] = gamma[vec_dofh_idx[0]];

34 r_vec_at_node[1] = gamma[vec_dofh_idx[1]];

35 r_vec_values.push_back(r_vec_at_node);

36 }

37

38 // Computing local contribution of the cell to the deviation norm
39 double local norm_value =

40 (0.5 « (r_vec_values.at(0) + r_vec_values.at(1)) - grad_eta)
41 .squaredNorm () +

42 (0.5 « (r_vec_values.at(1) + r_vec_values.at(2)) - grad_eta)
43 .squaredNorm () +

44 (0.5 « (r_vec_values.at(2) + r_vec_values.at(0)) - grad_eta)
45 .squaredNorm () ;

46 local_norm_value == area / 3.0;

47

48 // Adding local contribution to the value of the deviation norm
49 deviation_norm_value += local_norm_value;

50 }

51 return std::sqrt(deviation_norm_value);

s2 | }; // computelZDeviation



https://github.com/erickschulz/NPDECODES/blob/master/homeworks/ZienkiewiczZhuEstimator/mastersolution/zienkiewiczzhuestimator.cc

