


C++ code 4.1.7: Building of Mehrstellen system matrix. = GitLab

Eigen :: SparseMatrix<double> compMehrstellenA (unsigned int M) {

// For the sake of efficiency the use of Eigen’s sparse matrix data
type is

// essential. The matrix is stored in CCS format.

Eigen :: SparseMatrix<double> A(M « M, M = M) ;

// We already know that the matrix has at most 9M non-zero entries

er row

// g;d column. This information is passed to Eigen via the reserve ()
member

// funtion.

A.reserve (Eigen:: VectorXi:: Constant(M « M, 9));

// Iterate over all interior nodes of the mesh and apply the stencil

an
// initialize the matrix in column-wise order, from top to bottom in

ever
// colu%;, which is most efficient for the CCS storage format.
for (int i = 0; i <M; ++i) {
for (int j = 0; j <M; ++j) {
// Index of the current node
const int k=1 M+ j;

// Interaction term with the node below to the left
if (i >08% | > 0) {
A.insert(k - M- 1, k) = -1;
}
// Interaction term with the node below
if (i >0) {
A.insert(k -— M, k) = -4;
}
// Interaction term with the node below to the right
if (i >08 & j <M- 1) {
A.insert(k - M+ 1, k) = -1;
}
// Interaction term with the node to the left
if (j>0) {
A.insert(k - 1, k) = —4;
}
// Interaction term with itself
A.insert(k, k) = 20;
// Interaction term with the node to the right
if (j <M-=-1) {
A.insert(k + 1, k) = -4;
}
// Interaction term with the node above to the left
if (i<M-18&% ] >0) {
A.insert(k + M - 1, k) = -1;
}
// Interaction term with the node above
if (i <M= 1) {
A.insert(k + M, k) = -4;
}
// Interaction term with the node above to th right
if (i<M-18% ] <M= 1) {
A.insert(k + M + 1, k) = -1;
}
}

}
A.makeCompressed () ;
A /= 6;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/Mehrstellenverfahren/mastersolution/mehrstellenverfahren.cc

