C++ code 5.2.35: Implementation of coeff sigma () = GitLab

© ©® N o o B~ w0 N

20
21
22
23
24

Eigen :: VectorXd coeff_sigma(

const Eigen:: Matrix<double, 2, Eigen::Dynamic> &knots) {
int M = knots.cols() - 1;
Eigen :: VectorXd sigma (M) ;
// Definition of locations quadrature points (2-point Gauss rule)
const double rh = .5 + .5 / std::sqrt(3.);
const double |h = .5 - .5 / std::sqrt(3.);
const double h = 1.0 / static_cast<double>(M) ;
// Loop over all cells of the mesh
for (int i = 0; i <M; ++i) {
// Evaluate the y-component of uh on both quadrature points
const double uh2l = (1 - |Ih) « knots(1, i) + Ih + knots(1, i + 1);
const double uh2r = (1 - rh) « knots(1, i) + rh « knots(1, i + 1);
// Compute the derivative
const Eigen::Vector2d duh = (1. / h) = (knots.col(i + 1) — knots.col(i));
// Norm of the derivative vector
const double duh_norm = duh.norm() ;
// Compute sigma Iintegrated over the segment normalized to unit
length
sigma[i] = 0.5 = (1. / (std::sqrt(-uh2r) = duh_norm) +
1. / (std::sqrt(-uh2l) = duh_norm));
}

return sigma;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/Brachistochrone/mastersolution/brachistochrone.cc

