
C++ code 5.2.35: Implementation of coeff_sigma() ➺ GitLab

2 Eigen : : VectorXd coeff_sigma (

3 const Eigen : : Matrix <double , 2 , Eigen : : Dynamic> &knots) {

4 i n t M = knots . cols () − 1 ;

5 Eigen : : VectorXd sigma (M) ;

6 // Definition of locations quadrature points (2-point Gauss rule)

7 const double rh = .5 + .5 / std : : s q r t (3 .) ;

8 const double l h = .5 − .5 / std : : s q r t (3 .) ;

9 const double h = 1.0 / stat ic_cast <double >(M) ;

10 // Loop over all cells of the mesh

11 for (i n t i = 0 ; i < M; ++ i) {

12 // Evaluate the y-component of uh on both quadrature points

13 const double uh2l = (1 − l h) * knots (1 , i) + l h * knots (1 , i + 1) ;

14 const double uh2r = (1 − rh) * knots (1 , i) + rh * knots (1 , i + 1) ;

15 // Compute the derivative

16 const Eigen : : Vector2d duh = (1 . / h) * (knots . col (i + 1) − knots . col (i)) ;

17 // Norm of the derivative vector

18 const double duh_norm = duh . norm () ;

19 // Compute sigma integrated over the segment normalized to unit
length

20 sigma [i] = 0.5 * (1 . / (std : : s q r t (− uh2r) * duh_norm) +

21 1. / (std : : s q r t (− uh2l) * duh_norm)) ;

22 }

23 return sigma ;

24 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/Brachistochrone/mastersolution/brachistochrone.cc

