
C++ code 5.2.49: Implementation of compute_rhs() ➺ GitLab

2 Eigen : : VectorXd compute_rhs (

3 const Eigen : : Matrix <double , 2 , Eigen : : Dynamic> &knots , Eigen : : Vector2d a ,

4 Eigen : : Vector2d b) {

5 Eigen : : Index M = knots . cols () − 1 ;

6 double h = 1. / stat ic_cast <double >(M) ;

7 // Compute the "coefficients" for all cells

8 // A bit wasteful, because we only need sigma[0] and sigma[M-1]

9 const Eigen : : VectorXd sigma = coeff_sigma (knots) ;

10 const Eigen : : Matrix <double , Eigen : : Dynamic , 2> f = sourcefn2 (knots) ;

11 // Right-hand side vector

12 Eigen : : VectorXd rhs (2 * (M − 1)) ;

13 // Compute head part half of rhs: ~ϕ
1

14 rhs . setZero () ;

15 rhs [0] = sigma [0] * a [0] / h ;

16 rhs [M − 2] = sigma [M − 1] * b [0] / h ;

17 // Compute second half of rhs based on the 2-point Gauss rule

18 const double w1 = .5 − .5 / std : : s q r t (3 .) ;

19 const double w2 = .5 + .5 / std : : s q r t (3 .) ;

20 for (i n t i = 0 ; i < M − 1; ++ i) {

21 rhs [M − 1 + i] =

22 0.5 * h *
23 (w1 * f (i , 0) + w2 * f (i , 1) + w2 * f (i + 1 , 0) + w1 * f (i + 1 , 1)) ;

24 }

25 // Take into account offset function

26 rhs [M − 1] += sigma [0] * a [1] / h ;

27 rhs [2 * M − 3] += sigma [M − 1] * b [1] / h ;

28 return rhs ;

29 }

https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/Brachistochrone/mastersolution/brachistochrone.cc

