C++ code 5.2.49: Implementation of compute_rhs () = GitLab

Eigen :: VectorXd compute_rhs(
const Eigen:: Matrix<double, 2, Eigen::Dynamic> &knots, Eigen::Vector2d a,
Eigen :: Vector2d b) {
Eigen::Index M = knots.cols() - 1;
double h = 1. / static_cast<double>(M);
// Compute the "coefficients" for all cells
// A bit wasteful, because we only need sigma[0] and sigma[M-1]
const Eigen::VectorXd sigma = coeff_sigma(knots) ;
10 const Eigen:: Matrix<double, Eigen::Dynamic, 2> f = sourcefn2(knots) ;
0 // Right-hand side vector
12 Eigen :: VectorXd rhs(2 « (M - 1));
13 // Compute head part half of rhs: @
14 rhs.setZero () ;
15 rhs[0] = sigma[0] = a[0] / h;
16 rhs[M - 2] = sigma[M - 1] = b[0] / h;
17 // Compute second half of rhs based on the 2-point Gauss rule

© ©® N o o B~ w0 N

18 const double wi = .5 - .5 / std::sqrt(3.);
19 const double w2 = .5 + .5 / std::sqrt(3.);
20 for (int i =0; i <M-1; ++i) {
21 rhs[M -1 + i] =
22 0.5 » h »
23 (wl =« f(i, 0) + w2 = f(i, 1) + w2 » f(i + 1, 0) + wl = f(i + 1, 1));
24
}
25 // Take into account offset function

26 rhs[M - 1] += sigma[0] = a[1] / h;
27 rhs[2 = M - 3] += sigma[M - 1] = b[1] / h;
28 return rhs;



https://gitlab.math.ethz.ch/ralfh/NPDERepo/-/tree/master/homeworks/Brachistochrone/mastersolution/brachistochrone.cc

