C++ code 5.5.1: MeshFunction wrapper class FunctionMFWrapper

template <typename MESHFUNCTION, typename FUNCTION>
class FunctionMFWrapper {
public:
static_assert(If ::mesh:: utils :: MeshFunction<MESHFUNCTION>) ;
using mf_vector_t = decltype (std::declval <MESHFUNCTION> () (
std :: declval<const [f ::mesh:: Entity >(),
std :: declval<const Eigen :: MatrixXd>()));
using mf_result_t = typename mf_vector_t::value_type;
10 // Return type of the function F
11 using F_result_t =
12 decltype (std :: declval <FUNCTION> () (std :: declval<mf_result_t >())) ;

© ©® N o o B~ w0 N

14 explicit FunctionMFWrapper (MESHFUNCTION mf, FUNCTION F)

15 : mf_(std::move(mf)), F_(std::move(F)) {}

16 FunctionMFWrapper (const FunctionMFWrapper &) = default;

17 FunctionMFWrapper (FunctionMFWrapper &&) noexcept = default;

18 FunctionMFWrapper &operator=(const FunctionMFWrapper &) = delete;
19 FunctionMFWrapper &operator=(FunctionMFWrapper &&) = delete;

20 ~FunctionMFWrapper () = default;

22 std ::vector<F_result_t> operator() (const If ::mesh:: Entity &e,

23 const Eigen::MatrixXd &local) const {
24 LF_ASSERT _MSG(e.RefEl () .Dimension() == local.rows(),

25 "mismatch between entity dimension and local.rows()");
26 const std::vector<mf_result_t> mf_result = mf_(e, local);

27 std ::vector<F_result_t> result(local.cols());

28 for (long i = 0; i < local.cols(); ++i) {

29 result[i] = F_(mf_result[i]);

30 }

31 return result;

32 }

s | private:
35 MESHFUNCTION mf_;
36 FUNCTION F_;

7 |}



https://craffael.github.io/lehrfempp/group__mesh__function.html

