
C++ code 5.5.2: Function realizing fixed-point update

2 void f ixedPointNext I t (

3 std : : shared_ptr <const l f : : usca l fe : : FeSpaceLagrangeO1<double>> fes_p ,

4 Eigen : : VectorXd &mu_vec , Eigen : : VectorXd &rhs_vec) {

5 // Set up mesh functions for diffusion coefficient and reaction
coefficient

6 l f : : mesh : : u t i l s : : MeshFunctionGlobal mf_one (

7 [] (Eigen : : Vector2d /*x*/) −> double { return 1 . 0 ; }) ;

8 const l f : : fe : : MeshFunctionFE mf_uh_prev (fes_p , mu_vec) ;

9 const FunctionMFWrapper mf_coef f (mf_uh_prev , [] (double x i) −> double {

10 return (std : : abs (x i) < 1.0E−16) ? 1.0 : std : : sinh (x i) / x i ;

11 }) ;

12

13 const l f : : mesh : : Mesh &mesh { * (fes_p −>Mesh ()) } ;

14 const l f : : assemble : : DofHandler &dofh { fes_p −>LocGlobMap () } ;

15 const std : : size_t N_dofs (dofh . NumDofs ()) ;

16 // Assemble Galerkin matrix

17 l f : : assemble : : COOMatrix<double> A(N_dofs , N_dofs) ;

18 l f : : usca l fe : : ReactionDiffusionElementMatrixProvider <double , decltype (mf_one) ,

19 decltype (mf_coef f) >

20 e lmat_prov ider (fes_p , mf_one , mf_coef f) ;

21 l f : : assemble : : AssembleMatr ixLocal ly (0 , dofh , dofh , e lmat_prov ider , A) ;

22

23 // Enforce homogeneous Dirichlet boundary conditions

24 auto bd_f lags { l f : : mesh : : u t i l s : : f lagEnt i t iesOnBoundary (fes_p −>Mesh () , 2) } ;

25 // Elimination of degrees of freedom on the boundary. Also sets the

26 // corresponding entries of rhs_vec to zero.

27 l f : : assemble : : FixFlaggedSolutionComponents<double >(

28 [& bd_f lags ,

29 &dofh] (l f : : assemble : : g l b _ i d x _ t gdof_ idx) −> std : : pair <bool , double> {

30 const l f : : mesh : : E n t i t y &node { dofh . E n t i t y (gdof_ idx) } ;

31 return (bd_f lags (node) ? std : : make_pair (true , 0 .0)

32 : std : : make_pair (false , 0 .0)) ;

33 } ,

34 A, rhs_vec) ;

35 // Solve linear system

36 Eigen : : SparseMatrix <double> A_crs = A. makeSparse () ;

37 Eigen : : SparseLU<Eigen : : SparseMatrix <double>> so l ve r ;

38 so l ve r . compute (A_crs) ;

39 LF_VERIFY_MSG(so l ve r . i n f o () == Eigen : : Success , "LU decomposition fa i l ed ") ;

40 mu_vec = so l ve r . solve (rhs_vec) ;

41 LF_VERIFY_MSG(so l ve r . i n f o () == Eigen : : Success , " Solving LSE fa i l ed ") ;

42 }

