
C++ code 5.5.4: Function implementing the fixed-point iteration

2 template <typename FUNCTOR_F, typename RECORDER = std : : f unc t i on <

3 void (const Eigen : : VectorXd &, double) >>

4 Eigen : : VectorXd solveSemilinearBVP (

5 std : : shared_ptr <const l f : : usca l fe : : FeSpaceLagrangeO1<double>> fes_p ,

6 FUNCTOR_F f , double r t o l = 1.0E−4 , double a t o l = 1.0E−8 ,

7 unsigned i n t i tmax = 100 ,

8 RECORDER &&rec = [] (const Eigen : : VectorXd &, double) −> void { }) {

9 // Wrap right hand side source function into a Mesh Function

10 l f : : mesh : : u t i l s : : MeshFunctionGlobal mf_f (f) ;

11 // Reference to current mesh

12 const l f : : mesh : : Mesh &mesh { * (fes_p −>Mesh ()) } ;

13 // Obtain local->global index mapping for current finite element space

14 const l f : : assemble : : DofHandler &dofh { fes_p −>LocGlobMap () } ;

15 // Dimension of finite element space‘

16 const std : : size_t N_dofs (dofh . NumDofs ()) ;

17

18 // Assemble right-hand side vector

19 Eigen : : VectorXd phi (N_dofs) ;

20 phi . setZero () ;

21 // Assemble volume part of right-hand side vector depending on the
source

22 // function f.

23 // Initialize object taking care of local computations on all cells.

24 l f : : usca l fe : : ScalarLoadElementVectorProvider <double , decltype (mf_f) >

25 e l vec_bu i l de r (fes_p , mf_f) ;

26 // Invoke assembly on cells (codim == 0)

27 l f : : assemble : : AssembleVectorLocal ly (0 , dofh , e l vec_bu i lde r , ph i) ;

28

29 // Coefficient vector for approximate solution

30 Eigen : : VectorXd mu_vec (N_dofs) ;

31 // Initial guesd = 0

32 mu_vec . setZero () ;

33 // Main fixed-point iteration loop

34 Eigen : : VectorXd mu_old (N_dofs) ;

35 double d i f f_norm ; // Norm of correction

36 unsigned i n t steps = 0;

37 do {

38 mu_old = mu_vec ;

39 // Solve linear fixed-point system and return solution in mu_vec

40 f ixedPointNext I t (fes_p , mu_vec , ph i) ;

41 d i f f_norm = (mu_vec − mu_old) . norm () ;

42 rec (mu_vec , d i f f_norm) ;

43 steps ++;

44 // Correction-based termination

45 } while ((d i f f_norm >= r t o l * mu_vec . norm ()) && (d i f f_norm >= a t o l) &&

46 (steps < i tmax)) ;

47 return mu_vec ;

48 }

