C++ code 5.5.4: Function implementing the fixed-point iteration

© ©® N o o B~ w0 N

template <typename FUNCTOR F, typename RECORDER = std::function<
void (const Eigen::VectorXd &, double)>>
Eigen :: VectorXd solveSemilinearBVP (
std :: shared_ptr<const |f ::uscalfe :: FeSpaceLagrangeO1<double>> fes_p,
FUNCTOR F f, double rtol = 1.0E-4, double atol = 1.0E-8,
unsigned int itmax = 100,
RECORDER 8&&rec = [](const Eigen::VectorXd &, double) —> void {}) {
// Wrap right hand side source function into a Mesh Function
If ::mesh:: utils :: MeshFunctionGlobal mf_f(f);
// Reference to current mesh
const If ::mesh::Mesh &mesh{«(fes_p->Mesh())};
// Obtain local->global index mapping for current finite element space
const If ::assemble::DofHandler &dofh{fes_p->LocGlobMap() };
// Dimension of finite element space'
const std::size_t N_dofs(dofh.NumDofs () ) ;

// Assemble right-hand side vector
Eigen :: VectorXd phi(N_dofs) ;
phi.setZero () ;

// Assemble volume part of right-hand side vector depending on the
source
// function f.

// Initialize object taking care of local computations on all cells.

If ::uscalfe :: ScalarLoadElementVectorProvider<double, decltype(mf_f)>
elvec_builder(fes_p, mf_f);

// Invoke assembly on cells (codim == 0)

If ::assemble:: AssembleVectorLocally (0, dofh, elvec_builder, phi);

// Coefficient vector for approximate solution
Eigen ::VectorXd mu_vec(N_dofs) ;
// Initial guesd = 0
mu_vec. setZero () ;
// Main fixed-point iteration loop
Eigen ::VectorXd mu_old (N_dofs) ;
double diff_norm; // Norm of correction
unsigned int steps = 0;
do {
mu_old = mu_vec;
// Solve linear fixed-point system and return solution in mu_vec
fixedPointNextlt (fes_p, mu_vec, phi);
diff_norm = (mu_vec — mu_old) .norm() ;
rec (mu_vec, diff_norm);
steps++;
// Correction—-based termination
} while ((diff_norm >= rtol = mu_vec.norm()) && (diff_norm >= atol) &&
(steps < itmax));
return mu_vec;




