

C++ code 5.5.18: Incomplete listing of newtonNextIt ()

o N o g A~ W N =

20
21
22
23
24
25
26
27
28
29
30

5 |

32‘

33‘

35
36
37
38
39
40
41
42
43
44
45
46
47
48

49

void newtonNextlt(
std :: shared_ptr<const |f ::uscalfe ::FeSpacelLagrangeO1<double>> fes_p,
Eigen :: VectorXd &mu_vec, Eigen::VectorXd &rhs_vec) {
If ::mesh:: utils :: MeshFunctionConstant mf_one(1.);
If ::mesh:: utils :: MeshFunctionConstant mf_zero(0.) ;
const If ::fe::MeshFunctionFE mf_uh_prev(fes_p, mu_vec);

const FunctionMFWrapper mf_coeff1_uh_prev(

3

const FunctionMFWrapper mf_coeff2_uh_prev (

3

// We define some variables for easy access

const |f ::mesh::Mesh &mesh{x(fes_p->Mesh())};

const If ::assemble:: DofHandler &dofh{fes_p->LocGlobMap() };
const std::size_t N_dofs(dofh.NumDofs()) ;

// Assemble matrix A

If ::assemble :: COOMatrix<double> A(N_dofs, N_dofs);

If ::uscalfe :: ReactionDiffusionElementMatrixProvider <double>

elmat_provider (fes_p, ,)

If ::assemble :: AssembleMatrixLocally (0, dofh, dofh, elmat_provider, A);

// Assemble Galerkin in Eigen::SparseMatrix format

If ::assemble :: COOMatrix<double> M(N_dofs, N_dofs) ;

If ::uscalfe :: ReactionDiffusionElementMatrixProvider <double>
elmat_provider_M (fes_p, mf_one, mf_zero);

If ::assemble:: AssembleMatrixLocally (0, dofh, dofh, elmat_provider_ M, M);

Eigen:: SparseMatrix<double> M_crs = M.makeSparse () ;

// Construct the right-hand side of the system
Eigen :: VectorXd phi(N_dofs); phi.setZero() ;

phi += ;

phi —= :

|f ::uscalfe :: ScalarLoadElementVectorProvider<double>

elvec_builder(fes p,)

If ::assemble:: AssembleVectorLocally (0, dofh, elvec_builder, phi);

// Enforce homogeneous Dirichlet boundary conditions
auto bd_flags{If::mesh:: utils :: flagEntitiesOnBoundary (fes_p->Mesh(), 2)};
// Elimination of degrees of freedom on the boundary. Also sets
// corresponding entries of rhs_vec to zero.
If ::assemble :: FixFlaggedSolutionComponents<double > (
[&bd_flags,
&dofh](If ::assemble:: glb_idx_t gdof_idx) —-> std::pair<bool, double> {
const |f ::mesh:: Entity &node{dofh.Entity (gdof_idx)};
return (bd_flags(node) ? std::make_pair(true, 0.0)
: std :: make_pair(false, 0.0));
s
A, phi);
// Convert matrix A in COO format to A_crs in Eigen::SparseMatrix
format

the

