SOLUTION of (6-1.b):

The explicit Euler method is given by
Yi1 = Yi + hf(ty, Yi).
For the given differential equation we therefore obtain

C++11-code 6.1.2: Explicit Euler method. =* GITHUB

Eigen :: MatrixXd eeulstep(const Eigen:: MatrixXd& A, const Eigen:: MatrixXd& YO,
double h) {
Eigen :: MatrixXd res = Eigen:: MatrixXd ::Zero(Y0.rows(), Y0.cols());
res = YO + h ~ A = YO;
return res;

N o o 2~ W N

}

The implicit Euler method is given by
Yir1 = Y+ hf(tior, Yeo)
For the given differential equation this yields
Yii1 = Yo +hAY 1 = Y = (I-hA)7'Y,

Hence, every step of the single-step method entails solving a linear system of equations, which can be
done using EIGEN’s direct elimination solvers introduced in .

C++11-code 6.1.3: Implicit Euler method.=> GITHUB

Eigen :: MatrixXd ieulstep (const Eigen:: MatrixXd& A, const Eigen:: MatrixXd& YO,
double h) {
Eigen :: MatrixXd res = Eigen:: MatrixXd ::Zero(Y0.rows(), Y0.cols());
int n = A.rows () ;
res = (Eigen::MatrixXd::ldentity(n, n) — h = A).partialPivLu () .solve(YO0);
return res;

® N o o ~A W N

Finally, the implicit mid-point method is given by

Y1 = Ye+hf(3(tk + tee1), 3(Ye + Yer1)),

hence

1
Yiir = Y+ 5A(Ye + Ye1) = Yeor = (I-5A)7 (Ve + 5AYy).

C++11-code 6.1.4: Implicit midpoint method.=* GITHUB

2 | Eigen :: MatrixXd impstep(const Eigen:: MatrixXd& A, const Eigen:: MatrixXd& YO,


https://github.com/erickschulz/NPDECODES/blob/master/homeworks/MatODE/mastersolution/matode.cc
https://github.com/erickschulz/NPDECODES/blob/master/homeworks/MatODE/mastersolution/matode.cc
https://github.com/erickschulz/NPDECODES/blob/master/homeworks/MatODE/mastersolution/matode.cc

double h) {
Eigen :: MatrixXd res = Eigen:: MatrixXd ::Zero(Y0.rows (), Y0.cols());
int n = A.rows () ;
res = (Eigen::MatrixXd::ldentity(n, n) — h = 0.5 = A)
.partialPivLu ()
.solve(YO + h = 0.5 = A = Y0);
return res;

© ® N o o »

The method PartialPivLu () can also be replaced with the generic call 1u ()
showcases “expression programming” in EIGEN.

. The last code well




