
SOLUTION of (6-1.b):

The explicit Euler method is given by

Yk+1 = Yk + hf(tk, Yk).

For the given differential equation we therefore obtain

Yk+1 = Yk + hAYk.

C++11-code 6.1.2: Explicit Euler method. ➺ GITHUB

2 Eigen : : MatrixXd eeulstep (const Eigen : : MatrixXd& A, const Eigen : : MatrixXd& Y0 ,

3 double h) {

4 Eigen : : MatrixXd res = Eigen : : MatrixXd : : Zero (Y0 . rows () , Y0 . cols ()) ;

5 res = Y0 + h * A * Y0 ;

6 return res ;

7 }

The implicit Euler method is given by

Yk+1 = Yk + hf(tk+1, Yk+1).

For the given differential equation this yields

Yk+1 = Yk + hAYk+1 =⇒ Yk+1 = (I − hA)−1
Yk

Hence, every step of the single-step method entails solving a linear system of equations, which can be

done using EIGEN’s direct elimination solvers introduced in .

C++11-code 6.1.3: Implicit Euler method.➺ GITHUB

2 Eigen : : MatrixXd ieulstep (const Eigen : : MatrixXd& A, const Eigen : : MatrixXd& Y0 ,

3 double h) {

4 Eigen : : MatrixXd res = Eigen : : MatrixXd : : Zero (Y0 . rows () , Y0 . cols ()) ;

5 i n t n = A. rows () ;

6 res = (Eigen : : MatrixXd : : I den t i t y (n , n) − h * A) . part ia lPivLu () . solve (Y0) ;

7 return res ;

8 }

Finally, the implicit mid-point method is given by

Yk+1 = Yk + hf
(

1
2
(tk + tk+1),

1
2
(Yk + Yk+1)

)

,

hence

Yk+1 = Yk +
h

2
A(Yk + Yk+1) =⇒ Yk+1 =

(

I −
h

2
A
)

−1(

Yk +
h

2
AYk

)

.

C++11-code 6.1.4: Implicit midpoint method.➺ GITHUB

2 Eigen : : MatrixXd impstep (const Eigen : : MatrixXd& A, const Eigen : : MatrixXd& Y0 ,

https://github.com/erickschulz/NPDECODES/blob/master/homeworks/MatODE/mastersolution/matode.cc
https://github.com/erickschulz/NPDECODES/blob/master/homeworks/MatODE/mastersolution/matode.cc
https://github.com/erickschulz/NPDECODES/blob/master/homeworks/MatODE/mastersolution/matode.cc

3 double h) {

4 Eigen : : MatrixXd res = Eigen : : MatrixXd : : Zero (Y0 . rows () , Y0 . cols ()) ;

5 i n t n = A. rows () ;

6 res = (Eigen : : MatrixXd : : I den t i t y (n , n) − h * 0.5 * A)

7 . part ia lPivLu ()

8 . solve (Y0 + h * 0.5 * A * Y0) ;

9 return res ;

10 }

!

The method PartialPivLu() can also be replaced with the generic call lu(). The last code well

showcases “expression programming” in EIGEN.

