C++ code 7.8.5:

=* GITHUB

© ©® N o o B~ W N

// Use Newton method to approximate a stage.
template <typename Functor, typename Jacobian>
Eigen :: VectorXd SolveGenStageEquation(Functor &&f, Jacobian &&df,
const Eigen::VectorXd &y,
const Eigen::VectorXd &b, double h,
double rtol = 1E-6, double atol = 1E-8) {
// Need to solve the equation lhs(g) = g — hxf(y+g)/4 — b = 0.
// 1hs and its Jacobian Jlhs
auto |lhs = [f, y, b, h](const Eigen::VectorXd &g) {
Eigen::VectorXd val = g - 0.25 = h = f(y + g) - b;
return val;
b
auto Jlhs = [df, y, h](const Eigen::VectorXd &g) f{
// Jlhs(g) = Id — h*df(y+g)/4
int dim = y.size();
Eigen :: MatrixXd Jval =
Eigen :: MatrixXd :: Identity (dim, dim) - 0.25 = h = df(y + g);
return Jval;

|

// Perform Newton iterations:
Eigen ::VectorXd g = Eigen::VectorXd::Zero(y.size()); // initial guess g=0.
Eigen ::VectorXd delta =
-Jlhs(g).lu().solve(lhs(g)); // Newton correction term.
int iter = 0;
int maxiter = 100; // If correction based termination does not work.
while (delta.norm() > atol && delta.norm() > rtol = g.norm() &&
iter < maxiter) ({

g = g + delta;

delta = —Jlhs(g).lu().solve(lhs(g));

iter ++;
}
return g + delta; // Perform the final step

Sub-problem (7-8.e): Auxiliary function solveGenStageEquation ()



https://github.com/erickschulz/NPDECODES/blob/master/homeworks/GradientFlow/mastersolution/gradientflow.h

