
C++ code 7.8.5: Sub-problem (7-8.e): Auxiliary function solveGenStageEquation()

➺ GITHUB

2 // Use Newton method to approximate a stage.

3 template <typename Functor , typename Jacobian >

4 Eigen : : VectorXd SolveGenStageEquation (Functor &&f , Jacobian &&df ,

5 const Eigen : : VectorXd &y ,

6 const Eigen : : VectorXd &b , double h ,

7 double r t o l = 1E−6 , double a t o l = 1E−8) {

8 // Need to solve the equation lhs(g) = g - h*f(y+g)/4 - b = 0.

9 // lhs and its Jacobian Jlhs

10 auto l hs = [f , y , b , h] (const Eigen : : VectorXd &g) {

11 Eigen : : VectorXd va l = g − 0.25 * h * f (y + g) − b ;

12 return va l ;

13 } ;

14 auto J lhs = [df , y , h] (const Eigen : : VectorXd &g) {

15 // Jlhs(g) = Id - h*df(y+g)/4

16 i n t dim = y . size () ;

17 Eigen : : MatrixXd Jva l =

18 Eigen : : MatrixXd : : I den t i t y (dim , dim) − 0.25 * h * d f (y + g) ;

19 return Jva l ;

20 } ;

21

22 // Perform Newton iterations:

23 Eigen : : VectorXd g = Eigen : : VectorXd : : Zero (y . size ()) ; // initial guess g=0.

24 Eigen : : VectorXd de l t a =

25 −J lhs (g) . lu () . solve (l hs (g)) ; // Newton correction term.

26 i n t i t e r = 0 ;

27 i n t maxi ter = 100; // If correction based termination does not work.

28 while (de l t a . norm () > a t o l && de l t a . norm () > r t o l * g . norm () &&

29 i t e r < maxi ter) {

30 g = g + de l t a ;

31 de l t a = −J lhs (g) . lu () . solve (l hs (g)) ;

32 i t e r ++;

33 }

34 return g + de l t a ; // Perform the final step

35 }

https://github.com/erickschulz/NPDECODES/blob/master/homeworks/GradientFlow/mastersolution/gradientflow.h

